| -) [— | S

| .Y

-

ET20

ENTERPRISE TECHNICAL INFORMATION

TR RS RSS2 23222 R 22 2 2 2 2 02

EX0S 2.0
November 1984

The information in these technical specifications is
provided to aid users, software houses and hardware
companies in the creation of software or hardware for use
with the Enterprise computer. The firmware of the computer,
and the documentation herein, are Copyright (1984)
Intelligent Software Limitad, and no unauthorised
reproduction, in any form, is permitted.

The publication of detailed technical information does not
imply the releases of such information into the public
domain, and no waiver is granted to use such information
for gain except in connection with the creation of software
or hardware for use with the Enterprise computer.

ADQUIPMENT BV
INDUSTRIEWEG 10-12
pocTeUS 31!

440 AH WOERDEN
TEL. 03480 - 18341

Copyright (C) 1984 Intelligent Software Limited

-~

-

& —J

| .

8- AL.a

| N—

A

Leu g i

[— L-s

— |

[

[—

CONTENTS
ek ke ke k k

SECTION TITLE

The Operating System
1 Exos - Kernel
2 Exos - Function/Error Codes
3 Exos - Video Driver
4 Exos - Sound Driver
5 Exos - Cassette Driver
6 Exos - 'Keyboard Driver
7 Exos - Serial/Net Driver
8 Exos - Printer
9 Exos - Editor

The Custom Chips

10 The Video Chip (Nick)
11 The Sound Chip (Dave)
12 Pin Qut Information

ADQUIPMENT BV
INDUSTRIEWEG 10-12

POSTCUS 311

3440 A4 VWOERDEN
TEL C3480-18341

Contents

Par. Title Page
EXOS 2.0 — Kernel Specification
1. INTRCODUCTION 1
.55 OVERVIEW OF THE EXOS ENVIRONMENT 2
2.1 The EXOS Input/Output system 2
2.2 Memory Allocation 3
2 2.1 Memory Segments and Pages 3
2.2.2 User Segment Allocation 4
2.2.3 EXOS RAM usage and Channel RAM 4
2.3 System Extensions (ROM and RAM) 5
i SYSTEM INITIALISATION and WARM RESET 6
3.1 Cold Reset Seguence 6
< (R Warm Reset Sequence 7
4. APPLICATIONS PROGRAM INTERFACE 8
4.1 EXOS System Calls — General 9
4.2 Hardware and Software Interrupts 0 11
4.3 The STOP key 13
5. SEGMENT ALLOCATION 14
Sk User and Device/Extension Segments 14
5.2 System Segments and the EXO0S Boundary 15
5.3 The Shared Segment and User Boundary 16
5.4 System Segment Usage 17
(558 DEVICE DESCRIPTORS 20
6.1 The Device Chain 20
6.2 Details of Device Descriptors 20
6.3 Extension ROM Devices 22
6.4 User Devices 23
Tz DEVICE DRIVERS 24
7.1 Device Driver Routines - General 24
7.2 Device Initialisation Routine 25
7:3 Channel RAM Allocation 25
7.4 The Buffer Moved Routine 26
7.5 Device Interrupt Routines 27
7.6 Device Channel Calls 28
7.6.1 Open Channel and Create Channel Routines 28
7.6.2 Block Read and Write Routines 29
a8, EX0S VARIABLES 30
= SYSTEM EXTENSICON INTERFACE a3
9.1 Calling System Extensions — General 33

Par. Title Page
9.2 Action Codes 34
9.2.1 Action Code 1 - Cold Reset 35
9.2.2 Action Code 2 — Command string 35
9..2.3 Action Code 3 - Help string 36
9.2.4 Action Code 4 — EXOS variable 36
9.2.5 Action Code 5 — Explain error code 37
9.2.6 Action Code 6 — Load module 37
9.2.7 Action Code 7 — RAM Allocation 38
9.2.8 Action Code B8 - Initialisation 39
9.3 Starting a New Applications Program 40

10. ENTERPRISE FILE FORMAT AND EXOS LOADING FUNCTIONS 41

10.1 Enterprise File Format 41

10.1.1 Module Header Types 41

10.2 Loading Enterprise Format Files 42

10.3 Relocatable Data Format 43

10.3.1 Location Counter and Run Time Page 43

10.3.2 Relocatable Words and Absolute Bytes 44

10.3.3 End of Module Item 44

10.4 User Relocatable Modules 44

105 Relocatable and Absolute System Extensions 45

10.6 New Applications Programs 46

s K EX0OS FUNCTION CALLS IN DETAIL 48

11.1 Device Name and Filename String Syntax 48

312 Function 0 — System Reset 49

11.3 Function 1 - Open channel 50

11.4 Function 2 - Create channel 50

11:5 Function 3 - Close channel 50

11.6 Function 4 - Destroy channel 51

11.7 Function 5 - Read character 51

11.8 Function 6 — Read block 51

11.9 Function 7 - Write character 51

11.10 Function 8 — Write block 52

11.11 Function 9 - Channel read status 52

11.12 Function 10 - Set and Read Channel Status 52

11.13 Function 11 - Special function 53

11.14 Function 16 — Read, Write or Toggle EXOS Variable 54

11.15 Function 17 - Capture channel 5S4

11.16 Function 18 - Re—-direct channel 55

11.17 Function 19 - Set default device name 55

11.18 Function 20 - Return system status 56

11.19 Function 21 - Link Device 26

11.20 Function 22 — Read EX0OS Boundary 57

11.21 Function 23 - Set User Boundary 57

11.22 Function 24 - Allocate segment 57

11.23 Function 25 - Free segment 58

11.24 Function 26 - Scan System Extensions 58

11.25 Function 27 — Allocate Channel Buffer 58

11.26 Function 28 - Explain Error Code 59

11.27 Function 29 - Load Module 59

11.28 Function 30 - Load Relocatable Module 60

11.29 Function 31 - Set Time 60

11.30 Function 32 - Read Time 60

11.31 Function 33 - Set Date 61

11.32 Function 34 - Read Date 61

-_—

L3 6.8 L. 4 .o Ny s b [

L.

L. b i

(-4 L-4

J

-

29-Nov-84 EXOS 2.0 - Kernel Specification Page 1

1.

INTRODUCTION

EX0S is the extendable operating system for the
ENTERPRISE micro-computer. It provides an interface

" between an applications program (such as th: IS-BASIC

interpreter) and the hardware of th2 machine. Tha main
features of EXOS are a channel based input/output system
and sophisticated memory management facilities. The 1/0
system allow device independent communication with a range
of built in devices and also any additional devica drivers
orovided by the user.

The built in devices included with ths EXOS kern=l in
the ENTERPRISE ROM, are:

L Vid2o driver providing text and grapnics handling.

2. Keyboard handler oroviding joystick, autorepeat and
programmable [unction keys.

3. Screen editor with word processing capabilitiss.
4. Comprehensive four source stereo sound generator.
5 Cassette tapz file handler.

6. Centronics compatible parallel interface.

7. RS232 type serial interface.

8. Intelligent Net three wire network interface.

This document describes the EX0S karnal, which
interfaces betwean an applications program and the various
devices, providing memory management and various othar
facilities. It explains the action of the kernel from the
point of view of both devices and applications programs.
The built in device drivers themselves are each describad
in separate documents, some of which make reference to th2
kernel specification.

It is intended that, along with the various dzavice
driver specifications, this document will orovids
sufficient information for writing applications programs
using EX0S, or for writing new EXOS device drivers. All
details in this document apoly to EXOS version 2.0.

ADQUIPMENT BV
INDUSTRIZEWEG 10-12

FOSIZLS 1)
3340 Al \LCEDEN
TEL, 00030 -1224)

ET10/10 Copyright (C) 1984 Intelligent Software Limited

(}}

29-Nov-84 EXOS 2.0 = Kernel Specification Page 2

Zie

OVERVIEW OF THE EXOS ENVIRONMENT

2.1

When EXOS 1is running, there is always a "current
applications program" which has overall control of the
machine. This program can call EXOS to make use of any of
its facilities:, such as channel 1/0 or memory allocation.
In the standard machine the current applications program
will be either the built in word processor (WP) program or
the 1S-BASIC interoreter cariridge, althouagh it could be
any other cartridgs ROM or cassette loaded program in RAM.

Throughout this document the term "user" is wused to
r=fer to thz current applications program, since this
program is using EXOS.

The EX0S Input/Output system

As mentioned bsfore, the EXO0S I/0 .ystem i1s provided as
a set of device drivers. A devica driver 1s a piece of
code containing all the necessary routines to control the
device it is serving, and orovide a standard interface to
EXOS. A device driver might not in fact control a physical
d=2vice but may provids davice-liks rtacilities such as
reading and writing characters, purely in software.

When EXOS starts up it lccates all the built in device
drivers and makes an internal list of them. The list also
includes device drivers contained i1n any expansion ROMs
which are plugged in. The user can link in additional
devices (known as user devices) which are added to the
Yists Each device in the list is identified by a device
name such as "VIDEO", "NET" or "KEYBOARD".

The I/0 system is channel based, which means that in
order to communicatz with a dzvice, a channel must first be
cpzned. A channel is opened by giving the device name and
a one byte channzl numb2r .o EXOS. This =stablishes a
communications path to the devicz2 along which characters
can b2 trans.2rred in =2ith2r direction, either singly or in
arbitrarily-sized blocks, and special commands given to the
davice, simply by so=scitying thz channel number.

For a file based device (:uch as cassette tape or disk)
a channel would be open2d to do a single file transfer and
zhean closad again. For non-file deviczs (such as the
keyboard) a chann2l would probably b2 onenad and then
ramain open for all ruture acceszzs.

EXOS allows many channzlz te b~ cnonod simultancously to
a si1ngle deviec2, although cem~ <@svigcy thoms=lvat will not
ailow this. For exampla the vidro drivar allow” any number
of channzl¢ ooen to it but th2 keyboard cdriver allows only
one. Chann2ls remain open until they ar~ ~«nlic1 ly closed
by th2 user.

ros

L |

'-i

L.

ey ey ey

r Y ""“

S

-

"y

L S

L S

[| e | S—1

|)

4.4

1 L—--‘ l. - L-....l . sl

e

2.2 Memory Allocation

29-Nov-84 EXOS 2.0 - Kernel Specification Page 3

When a channel is opened, EXOS takes. care of allocating
any RAM which the device might need for buffers or
variables.

In order to understand the memory allocation facilities
of EXO0S it is first nacessary to understand the hardware
memory organisation on the Enterprise.

2.2.1 Memory Segments and Pages

The Enterprise uses a segmentad memory scheme in order
to extend che addressing capabilicy of the Z-80 from 64
kilobytes to 4 megabytes. The segmencing scheme is based
on l6k segments, '

The 2Z-80 address space is dividza uo 1inwo iour 16k
"pages®™, numberzd rcom zeco to chrds, The address2s for
these four pagss are: : '

Pagz-0 Ju0uh = 3FFFn

Paga-1 4J00h - 7FFFh

Paga-2 800uh - BFFFh

Page-3 C000n - FFFFh
Thz 4 megabyte address space 1s divided up 1intc 256
"segments*, 2acn sagm2nt baing 16k. Every 16k section oL
Mewory iu inh? system Lhus has 1ts own "segment number" 1in
the range [Uuh - FFh]. Th2 segmznc numbers rfor cartain

wectlons ol memory are permanently defined:

Intarnal 32Zx (04 - S2gments 00h and OLn
o<k Cartriga: =lat - Sagmznts O4n to 07n
laoternal 64K RAM - Sz2guments FCa oo P
2nd intzrnal 64k RAM - Sagmeats Fén to FBn

Associated with each of the :tour Z-80 pages there is an
8-bic "page register" on a Z-80 I/0 porc. The conctents of
these registers define which or the 256 possible segments

‘are to be addressed in each or the Z-380 pages. Thus any
segment can be addressed in any of che Z-80 pages simply by
putting its segment number into the appropriate page
register. On= segment can be simultaneously addressed in
two or more pages if desired by putting the same value into
sevaral of the paging registers.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

7
ki
i

29-Nov-84 EXOS 2.0 - Kernel Specification Page 4

The four internal RAM segments (segment numbers FCh to
FFh) are the only ones which the NICK chip can address for
generating video displays. For this reason they are
referred to as the video RAM. They are also slower to
access than all other memory since any Z-¢0 accesses to
them are subject to clock stretching to sychronise with the
NICK chip accesses.

2.2.2 VUser Segment Allocation

When EXO0S =starts up it locates and tests any RAM
segments which are available and builds up a list of them.
When it passes control to the user, it will do so by
putting the appropriatz szgmznt (usually a ROM segment)
into 2-80 page-3 and jumping to it. At this stage the
contents of pages 1 and 2 will bz undefined, but page-0
will contain a RAM segment, known as the "“page zero
segment”.

The first 256 bytes of the page zero segment contain
certain system entry points and system code, and also
certain areas which are reserved for CP/M emulation. The
rest ot the page zerc segment is not used by the system and
is completely free for use by the user. Bacause of the
system entry points, which include an interrupt entry
point, the page zero segment should always be kept in Z-80
page=0.

If the user requires more RAM then it can ask for
additioual segments from EXOS, It will be allocated other
RAM segments from the list unlrss th2re are none lett. o
can also free a segm2nt which it 7a: o:~n allocatcd when it
does not need it any more. Thos> additional s2gments will
not b2 explicitely paged in by EX0S, 1t 1& um to 'hs user
to page them in (usually into page: 1 and 21 wh2n ! needs
them.

Iz is possible for cth2 u»2r te o2 aiicca.~d o "shared
segment"”. This 1is a =az2gment oif which Zh2 usn i only
allowed to use part, the re:zt b=2ing us=d by EXOS. This
will b2 explained in mor2 decail la:ier.

2.2.3 EXOS RAM usage and Channel RAM

Segment number OFFh; which is one of th2 wvideo RAM
segments, 1s always usea by EXOS ana 15 theretfore known as
the "System segment",. Tne details ot what this seagment is
used for will be given later but it includes RAM areas for
system variables, system stack, built in dsvice driver
variables, 1line parameter table, lists of RAM and ROM
segments, the list of available aevices and RAM allocation
for extznsion ROMs. Thace RAM areas start at the top of
the segment and use as far down as necessary.

-

-

L

-

-y ey Ty ey

r-y 9y

[

-y _#-2

-3

e

| L - -

.o

| S

| W—" | S L.a

|

[S

4.3

[W

L.

| -

-1

29-Nov-84 EX0OS 2.0 - Kernel Specification Page 5

Below this system RAM allocation is the channel RAM
area. This contains an area of RAM for every channel which
is currently open. The size of each RAM area is determined
by the device when the channel is opened and may be any
size from just a few bytes up to several kilobytes. These
channel RAM areas always start in the system segment but
can occupy any number of other segments. The RAM for any
given channel is de-allocated when the channel is closed so
this memory allocation is not permanent.

System Extensions (ROM and RAM)

When EXOS starts up, as well as making a list of all
available RAM, it also looks for any extension ROMs which
are plugged in and builds up a list of these. Each of
these ROMs may contain EXOS device drivers which will be
linked 1into the system just like built in devices. Each

ROM also contains an entry point which is used for several
purposes.

Each ROM will be given a chance to become the current
applications ROM at startup time. If no ROM takes up this
opportunity then the internal word processor will take
control.

At certain times an "extension scan" will be done which
gives each ROM in the list a chance to «carry out some
service. This allows ROMs to provide additional error
messages, help messages and various other system functions.
An extension scan can be initiated by the wuser program
which will pass a command string to each ROM in turn. This
allows an extension ROM to provide some service or carry
out a command and then return to the main aoplications ROM.
This facility can also be used to start up another ROM as
the current applications program.

There is a facility in EXOS for the system to lcad

‘programs into system RAM (ie. RAM which is not allocatcd to

the user) and link these 1nto the list of ROMs. Thus all
the faclilities which are available to extansion ROMs are
also avalluble to code loaded into RAM. Tiose Rad
extansiuns can b2 loaded either into a complete 16k s2uwant
2ach, or 1if they are supplied in a relocatable cforwat,
seaveral of them can be put into one segmant thus reduclng
the amount of RAM which 1is used up in this way.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

€.

29-Nov-84 EX0S 2.0 - Kernel Specification Page 6

3.

SYSTEM INITIALISATION and WARM RESET

3.1

Cold Reset Seguence

A cold reset is done when the machine is rirst powered
on, and when thz RESET button 1= pressed, unless the user
has set up a "™warm reset address" (sce Dbelow). 1t
completely restart: the system, losing any information
which existed befores the reset.

A cold reset first does a checksum test of the internal

32k ROM. If this 1s passed 1t then locatzs any RAM in the
system, It searches Lhe wnole <{-megabyte aadress £pace
anart trom tha iuternal ROM and cartriog: =lot (s2gments 00
o 97 . I+ examines =2ach 16k segmen. 1n turn, acoing a
memory tost on 2ach ona2. 1¢{ a : »em2nz pasiz2c the memory
‘eant tnen it will b> add2d te 1=~ 1:-u of availlable RAM
segm2nts. Thezre 15 nNo f2sc 1ot RAM ro,iz2ction: S0 any
extension RAM must be decoded tully. Thz meomory test

dastroys any data which may hav2 b22n 1n th» RAM :~ament
oreviously.

After ths RAM test, the 4-megabyt2 momory space is then
szarchad for extension ROM3. The ROM :zarch will only find
ROM= in zegment numbaers which are multinles of i6. This
means chat 2xteznsion ROMs hav: to b2 decodz2d only to 256k
boundaries, but can reflect thrcughout this 256k =pace. An
avemption is made toir tne carcricg2 slot in that all four
segments are examined for ROM, but a test 1s donz to ignore
raflactions by checking that any two ROMs in thz cartridge
slot ars different. The details or extension ROMs are
~xplained later. N

Having created the ROM list, w~ariouc internal variables
ars et up, including Lha :system 2ntry points at the scart
of the page zero segment. The remainder ot the 1/0 system
iz then initialised by linking in and initialising all the
built in and extension devices and initialising all
extension ROMs asz will b2 explainesa in more detail later
on. The copyright display program is than entered which
displays a tlashing "ENTERPRISE" m=2::age and an Intzlligent
Software copyright message on the screesn, until a key is
oressad by the user. This diszplay and waiting for a Key
can be suppressed by an extansion ROM setting thez variable
CRDISP_FLAG to a non-zero valuz whan it 1s initialised (see
below for ROM initialisation).

When a key is pressed, the display will be removed and
the system will call =ach ext2nsion ROM in turn with action
code 1 (see later for explanation of action codes). Any
ROM which wants to set itselt wup as the current
applications vprogram simply do2s an "EXOS reszet" call (see
later) to claim tha system and then has full control.

ET10/10 Copyriaht (C) 1984 Intelligent Software Limited

*e-~N w3 -9

-—

Y

| Spe——j

[

| —

[

b b s A

i. e

b-< b L.as L.a

b-a

L-4

29-Nov-84 EXOS 2.0 - Kernel Specification Page 7

3.2

Warm Reset Sequence

A warm reset is performed when the RESET button on the
machine is pressed, if the usar has set up a warm reset
address, and if the system variable area has not been
corrupted. A warm reset address can b2 set up simply by
storing the address in the variable RST_ADDR which is in a
defined place in the system segmant. The addresg§ stored
must be in Z-80 page-0 and will be jumped toc when the warm
reset sSequence is complate. Tha warm resst routine will
thus always be in RAM since the page zero segmenc is RAM.

A warm reset does not do a RAM test or a ROM search.
All memory allocated to the us2r 1s undisturbed and any
system RAM extensions or user davices which are linked 1in,
remain. However all channsls are rorcibly closed and all
devices are re-initialised, any RAM which was allocated tec
chann2l RAM arza: is ireed. Th2 astails of this will be
explained 1later on (in tact an "EXOS reset" call |is
simulatad with the reset flags set to 1l0h - see later).

EXOS will set RST_ADDR back to zero before jumping to
the warm rs:=et address. Tnis ensures that if the system
has crashed then a second pra2ss orf the resst button will do
a cold resec. Also, as long as thz user waits for a short
time before setting its warm reset address up agaln,
pressing the reset button twice guickly will always do a
cold reset.

The code at the warm reset entry point will be entered
exactly as if it had just done an "EXOS reset" call so it
will have to set wup its stack pointer and re-snable
interrupts (ssee section on the "EXOS res=2t" call). The
contents of Z-80 pages 1, 2 and 3 will b2 un-defined so the
user must reset these d{or nimself. Particularly, 1in the
case of a ROM applications program which normally runs wit
its ROM in page-3, it will have to pags its own ROM back
in. This means of course that the applications program
must have stored 1ts sSegma2nt number in the page zero
segment in order for the warm reset routine to restore it.
Also note that any sortware interruot address (described
later) which may have been set up will have been lost, and
so this must be set up again.

ET10/10 Copyright (C) 1984 Intelligent Sortware Limized

|

29-Nov-84 EX0S 2.0 - Kernel Specification Page 8
4. MAPPLICATIONS PROGRAM INTERFACE
The first 256 bytes of th2 page =zoro =eanant, which
always resides in 2-80 page-0, ara laid out a- t2llows.
S e et ittt
0uh | Reserved for CP/M ~mulaticn |
s T e e e
08h | Fre=e i
e T T e B e
10h | Free |
s T e s Sttt St S
18h | Fre= |
B T e e it ittt TEE LR B S
20h | Fr=e . |
e T e s i Sttt T
28h Frez |
e T s i S St
30h | EXOS system call entry vactor |
B e S e e e s e =
38h | Interrupt vector | Soft ISR ad. | |
s St B S e D et +
40h I [
+ |
48h f Resarved for EXOS code/data |
+ 4+
50h 1 I
+ Bt St St Sttt 3
58h | | i
dmmm et mm e pm e m +
60h | . |
+ Reserved for CP/M emulation +
68h | ! [
- (D2fault FCB) +
70h | |
+ +
78h | |
s T e e e T
80h | |
. - Reserved for CP/M emulation .
. . (Default bufter area) .
F8h |
B et T B e et o
The areas which are 1listed as reserved for CP/M

emulation

can be used by any orograms which do not require
CP/M compatibility, but are never used by EXOS.
entry points will be described below.

The system

-

~y =3

3

-

~ 3

3 *y) r

L |

i |

| S—1 - | —y [—1 - -

| -1 | S

bee Lo VL o

| S

b-» Ko L.s .o

L-—

29-Nov-84 EXOS 2.0 - Kernel Specification Page 9

4.1

An applications program is started up by being entered
at its entry point address with a certain action code and
possibly a command string (see section on scanning
extensions). To take control of the system, the user must
do an "EXOS reset" call with the reset flags set correctly
depending on the action code (se2 the saction on scanning
extensions and also the description of the "EXOS reset"
call). Having done this call, the uszer must set up his own
stack and then enable interrupts. It then has rull control
of the system.

The segment with the applications program code in, for
example the cartridge ROM, will always be enter=d in Z-80
page-3 by EXOS and generally it is convenient to leave 1t
permenantly in page-3, although it can be moved 1I desired.
When an EX0S call is made, or an interrupt occurs, chsn
contents of pages 1, 2 and 3 will be changed, possibly many
times, but will always be restored to their original
segments before returning to the |user. Thus whatever
paging the user sets up will be preserved by all EX0S calls
and interrupts.

EXOS System Calls - General

An EX0S call is made by executing a "RST 30h"
instruction. The area from 30h to 5Bh contains cod= to
handle the transfer of control to the main EXOS ROM and
also to handle the return to thes user. This entire arza
should not be modified by the applications program at all,
except for the software interrupt addrass at 3Dh and 3Eh
(described later).

The different EXOS calls are derined by a one byts
function code which immadiataly :zollows tha “RST 30h"
instruction. Parameters to the EXO0S calls are passed 1in
registers A, BC and DE, and these registers are also usad

to return results. Register A always recurns a status
value which is zero if the call was successctul and non-zaro
if an error or unusual condition occurrad. Therz 13 a

function call which will provide a simple texc string
explanation for these status codes.

Registers AF, BC and DE will not ba preservad by any
EXOS calls except in certain specific cases which are noted
in the dstailed descriptions of the calls. The contents of
all other registers, (HL, IX, 1Y and thz altacnate regiscter
set 1including AF'), and of the four Z-80 page registers,
will be preserved by all EXOS calls, =a=xcept in a few
specific cases which are also notad in the detailed
functional descriptions. .

ET10/10 Copyright (C) 1984 Intell.gent Software Limited

1%

29-Nov-§4 EXOS 2.0 - Kernel Specification Page 10

EXOS always switches to an internal system stack in the
system segment whenever it is entered, and therefore uses
very little space on the user's stack. However, at least 8
bytes should always be available beyond the top of the
stack. Even if no EX0S calls are made, this space is
required rfor interrupt servicing. The program stack should
also be managed correctly such that there is never any
wanted information above the stack pointer, it can be
anywhere in 2-80 memory, provided it is in RAM of course.

The system calls will be explained in more detail later
but here is a list of them all with their function codes.

Code Function

0 System reset

1 Open channel

2 Create channel

3 Close channel

4 Destroy channel

5 Read character

6 Read block

7 Write character

8 Write block

9 Channel read status

10 Set and read channel infeormacion
11 Perform special function on channel
16 Read/Write/Toggle EXOS Variable
17 Capture channel

i8 Re-direct channel

19 Set default device name

20 Return system status

21 Link device

22 Read EXOS boundary

23 Set user boundary

24 Allocate segment

25 Free segment

26 Scan system extensions

27 Allocate channel bufrer (device only tunction)
28 Explain error code

29 Load module

30 Load relocatable module

3l Set time

32 Read time

33 Set date %

34 Read date

®TIN/IN Framirricahe (MY 1004 Tebkallimant Caflunrn Timibad

—x

vy oy vy ey o3 sy ey =y o

-3

—y *

L il

—

[—

| —

[S

| —-

h_as b o Loas W

{ -

[W

(o

29-Nov-84 EXOS 2.0 - Kernel Specification Page 11

4.2

runcticon calls 1 to 11 are device calls. They each take
a channel number in ragister A and the call will be passed
on by EX0S to the appropriate daevice driver for that
chann=1. Almost all of tha othar functions are handled
entirely within tn: EXOS Kernal. The axcapcions are: "Scan
system extoasica:" (cod2 26) which is an explicit request
to pass a command string arouhd all ROM and RAM 2xtensions,
and "load module" (29), ‘"explain error code" (28) and
"read/write/toggle EXO0S variable" (16) which will offer
their parameters to any exca2nsions 1f they are not
recognised.

When a device or system extension has control as a
result of one of these calls being made, it is able to make
its own EX0S calls. In this way EXOS 13 re-entrant,
although there are some limitations on this. Device
drivers are not allowed to open or close channels when thev
have control (because of channel buffer moving problems -
see later). The "allocate channel buffer" call (code 27)
can only be made by a device during an open channal call,
the user should never maxke this call.

The EXOS calls which can result'in nested EXO0S calls
being made carry out stack checking to ensure that the
internal system stack does not overrflow. This effectively
limics tne depth of nesting allowed although there is an
absolute 1limit of 127 levels beyond which the system will
not work. It is difficult to imagine this depth of nesting
being required.

Hardware and Software Interrupts

EXOS wuses hardware interrupts to keep 1its clock/
calendar up to date. Each device driver can also have an
interrupt routine which EXOS will call whenever a specifisd
type of interrupt occurs. Datails of this are given with
the explanacion of device descriptors. There 1is no
racility for the wuser to have an 1lnterruot routine.
However the user is provided with a rfacility rfor handling
software interrupts.

Software interrupts provide a way :for the user to be
alerted to various events occuring within EX0S. A software
interrupt is triggered by a device driver's interrupt
routine detecting some special occurence, such as the
network driver having received a block of data from the
network. When this cccurs the device stores a "software
interrupt code®™ in the variable FLAG_SOFT_IRQ which is in
the system segment. This code indicates what the reason
for the software interrupt was.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 12

Nothing else occurs until EXOS is about to return to the
user, which may be directly from the interrupt routine or
may be very much later if the interrupt occured while a
device driver was executing. At this time a software
interrupt will be carried out it the user has defined a
non-zero "software interrupt address”. This address is
defined simplvy by storing the address at 3Dh and 3Eh in
page-0, which is in fact the operand of a jump instruction.

The software interrupt is carried out by EXOS jumping to
the software interrupt address (which can be in any 2-80
page) instead of executing the normal "RET" instruction
which would return to the user. The environment will be
exactly as it would be if the return had been made, with
the correct paging and stack pointer. The return address
will still be on the stack so the software interrupt
routine may return to the main program. It it does return
then ALL registers must be preserved, as it could be
interrupting any point in the user s program.

It 1is not necessary for the software interrupt routine
to return if it doesn t want to, 1t can caus2 some sort of
warm re-start of the user's program.

The software interrupt routine can find out the software
interruot code by reading an EXOS variable CODE_SOFT_IRQ.
This 1is in fact a copy of the code set up by the device
since the code itsalf is reset to zero before jumping to
the routine to prevent multiple responses to the software
interrupt. If more than one software interrupt occurs
before the software interrupt routine can bz called then
only the most recent one will b2 acknowledged.

All sources of software interrupts rrom built in devices
can be enabled or disabled by sstting appropriate EXOS
variables, or making special function calls. The codes
from built in devices are:

10h...1Fh - ?FKEY.... Keyboard ifunction key pressed
20h - 7?8TOP Keyboard STOP key pressed
21lh - ?2KEY Kzyboard any key pressed
30h - 2?NET Network data recaived
40h - ?TIME Timer EX0S variable reached 0

ET10/10 Copyright (C) 1984 Intelligent Software Limited

r

~—%

Y

Y

i

(|

Ty Ty

LA |

Y 7N Yy 7

[— e

| e -

o

s b Mo o

| Y

bev Lo b_4

b hed Lad

| SO

Sk

29-Nov-84 EX0S 2.0 - Kernel Specification Page 13

4.3

The STOP key

The stop key is one of the possible sources of software
interrupts in EXOS. However it is rather a special case.
The reason for this is that pressing the STOP key should
always cause an immediate, or almost immediate response.
However, the system 1is frequently waiting in a device
driver for something to happen (such as the editor waiting

- for a key to be pressed), or is just doing something which

will take a long time (such as the video driver doing a
fill). In these cases if the STOP key only caused a
software interrupt there would be no immediate rcsponza.

The solution to this is that whenever any device 1is
doing something which 1is potentially a slow, or non-
terminating process, it checks the value of FLAG_sSOFT_IRQ
p=riodically. If it contains the code ?STOP then the STOP
key has been oressed. The device then immediately, or at
least woun, returns back to EXOS with a status code .STOP.
Eventua Ly this code will find its way back to the
ussr ahd the software interrupt will occur.

In ract in scm¢ cases the situation is worse than this
because it is neccssary to interrupt a process which runs
with normal EXOS interrupts disabled, so the kevbhscard 1is
not being scanned. An example of this is the cassette
drivar writing or reading from tape. However 1in these
cases the devicz itself contains code to look at the STOP
key and will cause both the software interrupt, and the
error return itselt,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

‘¥

29-Nov-84 EX0S 2.0 - Rernel Specification Page 14

5. SEGMENT ALLOCATION

5.1

Segment allocation was explained briefly in the system
overview and will be described in more detail here. At
cold reset time, EXOS builds up a list of all available RAM
segments, testing each one. The system will not function
unless at least 32k (two segments) is available, and this
must include segment OFFh which will be the system segment.

The lowest numbered RAM segment is taken out of the list
and used as the page zero segment. This segment is never
used in any form of allocation, it remains in 2-80 page-0
for evermore.

Each RAM segment in the list can be in one of five
different states which are:

Free

Allocated to the user

Allocated to the system

Allocated to a device/extension

Shared between the system and the user

The number of segments in each of these catagories can
be determined by making a "return system status" EXOS call
(code 20), which is explained in the detailed function call
specifications later on.

The system segment (segment OFFh) is always either
allocated to the system or shared, it can never be free.
All other segments are initially free except for the page
zero segment which is outside this allocation scheme.

User and Device/Extension Segments

When the wuser makes an "allocate segment" EXOS call
(code 24), if there are any free segments then one of them
will be marked as allocated to the user and its segment

number will be returned. The user can obtain as many
segments as he likes in this way, 1limited only by the
number of segments available. H2 can also free any

segments which he has been allocated by making a "free
szgment” EXOS call (code 25).

Segments can become allocated tc devices/extensions in
several ways. A device driver can make an allocate segment
call in the same way as the user, and if a segment Iis
available it will -be marked as allocated to a
device/extension, Also a device can free segments in the
same way as the user. Davice/exte2nsion z~gm~nts can also
bercome allocated when a system extension is loaded (see
dotails of "load module" EXOS call), or at startup time
when an extension ROM is linked in (if the ROM requests
one - see section on extension ROM initialisation).

ET10/10 Copyright (C) 1984 Intelligent Software Limited

~

Lo Ban ot Mikan Bah |

L | L | L |

an B e R %

A

A_a b_a [-

h. 4 | -

k-4

E_-32 L 13 E . LE_a

- |

L_4

G

29-Nov-84 EXOS 2.0 - Kernel Specification Page 15

5.2

Any segments allocated to devices/extensions or to the
user will remain allocated after a warm reset. Also
device/extension segments (but not user segments) will
remain allocated when a new applications program is started
up. Great care must be taken with any device that does
allocate RAM segments to itself, to ensure that they are
freed when the device has finished with them. Particular
care must be taken with device 1initialisation since a
device can be re-initialised and will still have the
segments allocated, so it must remember this and not try to
allocate itself new segments.

Whenever a user or a device/extension segment is
requested, the lowest numbered available segment will be
allocated. This ensures that the video segments, which
have high numbers, are kept as much as possible for the
system so that they will be available for' video channels.

System Segments and the EXOS Boundary

Segments which are allocated to the system are basically
used for channel RAM areas. The system uses RAM starting
at the top of the system segment, down as far as necessary,

_possibly continuing into other segments. The top of tne

system segment is used for system variables, system stack,
device RAM areas (sze explanation of devices and cevice

dezcriptors) and RAM areas tor extension ROM:. Y ot
these must be contained 1n the system segment. Below tacsce
there 1s a chain of channel descriptors, each witn an

associated RAM area, which can occupy as many segusnts as
necessary. This will be described in more detail later.

Any scegments which are used for channel RAM are marked

as ol locaced to the system, Each segment is used frow the
tuy aown unctl it becomes full, at which time another
Zogeecnt s allocated. Thus all systam segments will be
tally used, eoxcept for the last one which may Dave Scme
space Laft in rha bottom, There is a system variuole tne
"EX0S boundarv" wl.ich indicutes the lowest aadress i the
last system sequent which is being used. This vale: can be
read by doing a "read EX0S boundary" call (ccde <£2) wnich

returns a value in the range [0000h to 3FFFh].

New system segments can be allocated when a channel 1is
opened or when a user devica or system extension is linked
in. When a channel is closed and the associated channel
RAM is freed, this may result in the channel RAM usage
moving out of a segment, in which case the segment will be
freed and the EX0S boundary set up for the previous
segment.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

'3

29-Nov-84 EXOS 2.0 - Kernel Specification Page 16

EXOS always allocates the highest numbered segment
available when it needs a new segment for the system. This
ensures that as much contiguous video RAM as possible is
available for video channels, since video segments are the
highest numbered. If a video segment becomes free while
the system is using a non-video segment then the two will
be swapped, although this will only be done next time a
channel is opened.

The Shared Segment and User Boundary

There can be at most one RAM segment which 1is shared
between the user and the system. If it exists, this will
always be the last of the segments used by the system and
will therefore contain the EXOS boundary as described
above.

The user will be allocated a shared segment if he makes
an "allocate segment" call when there are no free segments
available. This fact is indicated by a specific status
code (.SHARE) being returned by the allocate segment call
and the user will also be told the current position of the
EXOS boundary within this segment (see description of
"allocate segment" call). A device or a system extension
can nevcor be allocated a shared segment.

Whan the shared segment is allocated, a second boundary,
called the "user boungary", is cr~ated within the segment.
This is in addition to the EXOS boundary and will initially
have the same value. The user can at any time et a new
position for the user boundary by makina a "set |user
boundary" call (code 23). The user boundary can bz set to
any wvalue from zero, up to and including the current
setting of the EXOS boundary.

The user can use the segment from the start up to (but
not including) the user boundary. EXOS is always using the
srament from the top, down to (and including) the EXOS
bcundary. The area in betwsen the two boundaries (which
may be zero bytes) is no man's land and must not be used
either by EXO0S or by the user. Howzver EXOS may, when it
requires more RAM, move the EXOS boundary down as far as
the user boundary. Similarly thz user may move the user
boundary up as far as the EXOS boundary when it needs more
RAM. In this way the sharing of the segment between EXOS
and the user is flexible and can change.

The segment can become un-shared when a channel is
closed, if EXOS no longer needs the segment. Also the user
can free the shared segment in which case it will be
flagged as allocated to the system. Having freed it, the
user can always allocate it again of course.

——n A A TSP S W & Py A AR Tl L% Lok P flirmema TlamleaAd

r-S

— —

~—

L

[S

[-

[B——)

29-Nov-84 EX0S 2.0 - Kernel Specification Page 17

t/>/4>0BFFA/Bh

’5""?“ 1:“ i “:nr W't T
LIy qil}'Z.“:

e |'IrL" £
1 i

Lk

io

o

J

When a channel is opened, if there is a shared segment
then the EXOS boundary will usually have to be moved down.
The user boundary should therefore be moved down as far as
possible before opening a channel, to make space. Also, if
a segment has becomes free while there is a shared segment
(it could have been freed by the user or by a device or
extension), then EXOS is unable to allocate this to the
system, although it can be allocated to the |user. This
means that it is advisable for the user to free the shared
segment as soon as possible, maybe copying the contents
into a new segment, in order to make the best use of RAM.

System Segment Usage

The system segment has been mentioned several times
be fore. This section gives details of how it is used, and
certain addresses. Further details of the various sections
of RAM which can be allocated in it will be explained in
the relevant sections.

The very top of the system segment contains a few
variables which are at defined absolute addresses and can
be wused either by the user or by devices. Some of these
have already been explained and others will be mentioned
later. This list just gives the address and name of each
one, along with a very brief description.

0BFFFh USR_P3 \ These are the contents of the four
0BFFEh USR_P2 N paging registers when EXOS was last
O0BFFDh - USR_P1 / called. Needed by devices when
0BFFCh USR_PU / given user addresses.

STACK_LIMIT Used for stack checking by
devices which need more than
98 , A the default amount of stack.

i Y

R§T_ADDR User's warm ceset address.
52 ;
0BFF6/7h ST_POINTER The 2-80 address of the status
e - line memory. The 12 Dbytes
I EeBe from this address onwards are
95323“75343 the status line (sce video
' driver specification).

0BFF8/9h

0BFF4/5h - LP POINTER The 2-80 address of the sturt of
the line paruameter tuble (see
video driver specification).

0BFE3h

1

PORTBS Current value of general output
port 0BS5h. Used by various
devices which access this
port. See device driver
specs for description.

ET10/10 Copyright (C) 1984 Intclligent Software Limited

29-Nov-84 EX0S 2.0 - Kernel Specification Page 18
:{ O0BFF2h - FLAG_SOFT_IRQ Triggers software interrupts.
% => OBFFO/lh - SECOND_COUNTER 1l6-bit seconds counter.
5 0BFEFh - CRDISP_FLAG Flag for suppressing sign-on
i message.,

R=low these fixed variables are all the internal system
variables for the EXOS kernel, and also RAM areas for all
the built in devices. These RAM arzas include space for
the line parameter table, characrter tont, tunction key
<trings, sound gueues, etc, as well as wvariaoles for each
davice. This area also includes spac2 for the EXNS system
stack which is used by all devices and system ~x'enzions.

-

T':>» size of this ar=a is fixed ior anry on v .ics of EXOS.

Below this fixed area is the list of RAM seam2nts, and
=low that the list of extension ROMs, both of which vary
in size depending on the number of extension RAM and ROM
units connected. Below these lists is any systam segment
RAM allocated to extension ROMs when they are initialised
(see later for explanation). These aresas are all set up at
cold reset time and then remain fixed.

Below this are the device descriptors for all built in
drvice drivers and also any da2vice drivers contained in
extension ROMs. This includes any device RAM areas
required by extension ROM devices. Built in devices have
their device RAM allocated permanently in the fixed RAM
area and so do not reguire any RAM here. This area is
newly set up whenever a "reset EXOS" call is made, with the
reset flags set to re-link desvices (see description of the
reset EXOS call), which 1is generally when a new
applications program takes control.

When a user device is linked in, this area will be
extended downwards to include any device RAM which the new
device reguests. This will result in everything below this
are being moved down. Once allocated this device RAM
will remain until devices are re-linked (see above), which
will destroy the user device driver.

All of the above areas must lie wholly within the system
segment. Any attempt to allocate RAM which would push them
out of this segment will fail.

Immediately below the user device RAM area is the start
of the channel RAM area: This must start in the system
segment, but can run down into as many other segments as
reqguired. The channel RAM area includes a channel
descriptor, and a RAM area for each channel which |is
currently open. These RAM areas can be moved around by
EX0OS when other channels are opened or closed, oOr user
devices linked in. They are explained in detail in the
section on channel RAM allocation.

N

b |

-—

-

L 1 | antd —y Y !—-‘ —y

Ll |

—-y

i, |

. ..a l_....‘.

L_a

h-2a

| -] L—

L4

1\)

29-Nov-84 EX0S 2.0 - Kernel Specification Page 19

It 1is clear from the above description that the sizes
and addresses of most of these areas vary depending on the
hardware and software configuration. However as an example
the diagram below shows the addresses for a standard 64k
machine with a single ROM cartridge, such as the IS-BASIC
cartridge, fitted. This should only be used as a guide
since the exact sizes and addresses may vary in future
versions. The addresses are given in 2-80 page-2, since
this 1is where the system segment is normally accessed by
EX0S and devices, although it can of course be pagad in to
any of the Z-80 pages.

Address Size
BFFFh:
wwie Defined address variables (list above) 17
BFEFh:
Internal EX0S system variables 267
BEE4h: '
Device RAM areas for built in devices 3212
B258h:
Space for EXOS RAM resident code 60
B21Ch:
System stack 1 1604
_ABIEJGh: i
Taon S o e TTTTTTTT TS T |
\ RAM segment list, 1 byte per segment ; 4
ABD2h: | i
TS s e s S et e e e
Extension ROM list, 4 extra bytes per ROM | 12
ABC6h: l
’ RAM areas for extension ROMs 0
f . .
| Device descriptors for built in devices 132
AB42h: |
AB4lh: ‘
. Start of channel descriptor chain
. [

ET10/10 Copyright (C) 1984 Intelligent Software Limited

%5

29-Nov-84 EX0S 2.0 - Kernel Specificaticn Page 20

6. DEVICE DESCRIPTORS

6.1

The Device Chain

Every davice driver has a "device descriptor" in RAM
somawhere which de2fines the davicz s name, the address of
the device driver code and various other details. They are
kept in a linked list (called the device chain), and
whenever a channel is opened, EXOS searches this list for a
drvice with the correct name and oopens the channel to that
device.

The device <chain is re-built whenever a '"reset EX0OS"
call 1is made with the reset flags set to re-link devices
(see details of the reset EXO0S call). This occurs at cold
resat time and when a new aoplications program takes
control. The chain is initially created with a descriptor
for each of the built in device drivers, and also for any
device drivers contained in extension ROMs.

The user, or a system extension, can link in new devices
with a simple EXOS call. These will be added to the device
chain but will be lost when the chain is re-built.

Details of Device Descriptors

The format of a device descriptor is given here. Each
element is one byte, apart from the device name which is of
a variable size. The offsets given are offsets from the
DD_TYPE field since this is where the device chain pointers
point to. ;

-3 DD_NEXT_LOW \ 24-bit address of DD_TYPE field of

-2 DD_NEXT_HI > next descriptor. Address will be in

-1 DD_NEXT_SEG / 7-80 page-l. End of chain indicated
by DD_NEXT_SEG=0.

+0 DD_TYPE Must be zero.

+1 DD_IRQFLAG Defines device interrupt servicing.
+2 DD_FLAGS b0 set ror video device. bl-b7 clear
+3 DD_TAB_LOW \ 24-bit address of device entry point
+4 DD_TAB_HI > table. Address must be in Z-80

+5 DD_TAB_SEG / page-l.

+6 DD_UNIT_COUNT Normally zero. Non-zero to allow

multiple devices with this name.

+7.. DD_NAME Device name string.

r'\

Ty r) Ty e vy ey

-y vy Ty w35 -y

-

s |

Y

- | | - a__a

_—

L

| — | S

e

29-Nov-84 EXOS 2.0 - Kernel Specification Page 21

The DD_TYPE field 1is provided to allow for future
expansion and also to enable a device to be disabled. This
happens for example when a new device is linked in with the
same name as an existing one. The old device will be
disabled (unless DD_UNIT_COUNT is non-zero - see below).

The DD_IRQFLAG field has one bit for each of the four
sources of interrupts in the Enterprise. If the
appropriate bit is set then this device driver's interrupt
routine will be entersd whenever an interrupt of that type
occurs. Any combination of bits can be set. The bit
assignments are:

bl - Programmable sound interrupts

b3 - lHz interrupts

b5 - Video interrrupts (50Hz)

b7 - External interrupts (network)
b0,2,4,6 - Should be zero.

Bit-0 of the DD FLAGS byte is used to control channel
RAM allocation, which is different for video and non=-video
devices. It will be explained in the section on channel
RAM allocation. £

The entry point table address (DD_TAB_SEG, DD_TAB_HI and
DD_TAB_LOW) points to a table of two byte entry addresses,
one for each function which a device has to perform. The
address given in the descriptor must be in 2-80 page-1l
since EXOS accesses the table there. However the entries
in the table itself must be in 2Z-80 page-3 since when EXOS
calls a device it puts the devices code segment in page-3.
The entry points themselves must all be in the same segment
as the entry point table. The entries in the table are
listed here and will be explained in the section on device
drivers.

+0 Interrupt (Need not be valid if DD_IRQFLAG=0)
+2 OPEN CHANNEL

+4 CREATE CHANNEL

+6 CLOSE CHANNEL

+8 DESTROY CHANNEL

+10 READ CHARACTER

+12 READ BLOCK

+14 WRITE CHARACTER

+16 WRITE BLOCK

+18 READ CHANNEL STATUS
+20 SET CHANNEL STATUS
+22 SPECIAL FUNCTION
+24 Initialisation

+26 Buffer moved

The entry points in capitals correspond directly to the
relevant EXOS calls, the others are generated inside EXOS.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 22

6.3

The DD_UNIT_COUNT field is normally zero but can be set
non-zero to allow multiple devices of the same name to be
handled by translating unit numbers. This is explained
fully in the section on opening channels.

The DD_NAME field is the device name itself. The first
byte of this is a length byte, followed by the characters
of the name in ASCII. The name can be up to 28 characters
long and must consist of upper case letters only.

Extension ROM Devices

At offset 0008/9h in every extension ROM is a pointer to
the start of a chain of devices. If ther2z are no device
drivers in the ROM then this pointer should bz zero. Each
element in the chain is basically a device descriptor as
de fined above, but with certain fields missing, or replaced

by other information. The layout of one of these pseudo-

descriptors is:

XX_NEXT_LOW \ 1l6-bit pointer to XX_SIZE field of

XX NEXT _HI / next pseudo-descriptor. In Z-80 page-1
XX_RAM_TOW \

XX_RAM_HI / Amount of device RAM required.
DD_TYPE \ These fields are exactly as in a
DD_IRQFLAG | complete device descriptor defined
DD_FLAGS | above. The DD_TAB_SEG field can
DD_TAB_LOW \ have any value since EX0S fills

DD TAB HI / this in when it links the device.

(DD_TAB_SEG) |
DD_UNIT_COUNT |
DD_NAME /

--=> XX_SIZE Size of pseudo-descriptor (see text)

The device chain pointer at the start of the ROM points
to the XX_SIZE field of the first pseudo-descriptor, in
page-1. Similarly the <chain pointer (XX_NEXT_LOW and
XX_NEXT_HI) in each pseudo-descriotor points to the XX_SIZE
field of the next one, 1in Z-80 page-l. The end of the
chain is marked by a pseudo descrlptor with both DD_NEXT_HI
and DD_NEXT_LOW set to zero.

The XX _SIZE field is a count of the number of bytes in
the descriptor from DD_TYPE to the device name. Thus if
the device name was one character long, DD_SIZE would be 9.

e

I

-—-

L] -- 9 N -y

b, |

v~y T3 vy "1 "3 3 vy

™

—

—

| e—

| . | S——

| A

h-a boo

— i k-2

| [

— | —1
C

-

29-Nov-84 EXOS 2.0 - Kernel Specification Page 23

The main descriptor fields (all those starting with DD_)
will simply be copied into RAM when the device is linked
in, and a three byte link added to the start to create a
complec: devica dgacrlptor. Note however that EXOS fills
in the DD_I'AB_SEG ficld, since a ROM on the expansion stack
cannot know what segment it will be in. This means that
the entry point table must be in the same segment as the
pseudo-descriptor.

The XX SIZE HI and XX_SIZE _LOW fields define a la-bit
number which is thes amount of davica RAM which Lnis device
requires in the system segment. This number must be stored
in two's complement and with an offsat added to allew for
the three byte link which EXOS puts on the start of the
descriptor. If no device RAM is required then the wvalue
should be FFFEh (-2). If one byte is required it should be
FFFDh (-3) and so on.

Whenever the device is entered register IY will point to
its device descriptor, as will be explained in the section
on device drivers. Since the device RAM 1is allocated
immediately below the descriptor, the device RAM can be

accessed relative to IY. If "n" bytes are requested then ’

these can be accgssed at addresses:

IY-4, IY¥-5,, I¥-4-n

User Devices

User devices are those which are linked in with a "link
device™ EX0S call which can be made either by the user or
by a system extension. To link in a user device a complete
device descriptor must be set up in RAM. All fields of
this must be complete except for cthe 24-bit link
(DD_NEXT_SEG, DD_NEXT_HI and DD_NEXT_LOW). The EX0S call
is “then made with DE pozntlng to the TYPE field of this
descriptor, which can be in any Z-80 page.

An area of device RAM can be requested by simply setting
register BC to the amount reguirsd. This RAM will be
allocated below the device RAM ror any ROM extension
devices. The device driver will be passed the address of
this RAM area in register IX when it is first initialised.
If "n" bytes are requested then they can be accessed at:

Ix-l' Ix-2, DR] IX-n

Note that this address will only be passed in IX on- the
first initialisation. It is the responsibility of the
device driver to remember the address for future use, even
when it is re-initialised such as after a warm reset.

ET10/10 Copyright (C) 1984 Intelligent Scftware Limited

%7

29-Nov-84 EXOS 2.0 - Kernel Specification Page 24

7. DEVICE DRIVERS

—r—

A device driver consists of a set of routines, one to
implement each of the fourteen entry points contained in
the entry point table which was described in the previous
chapter. This chapter describes the functions which must
be provided by each of these routines, including details of
register usage.

Device Driver Routines = General

O0f the fourteen device driver entry points, eleven of
them match wup directly with EXOS function codes 1 to 11.
Whenever the user makes one of these EXOS calls, EXOS will
find out which device is the correct one for this channel
and call the appropriate entry point of that device driver.
These calls are referred to as the "device channel calls"”.

The three remaining device driver entry points are, for
initialisation, interrupt service and channel buffer
moving. Calls to these three routines are originated from
within the EXOS kernel at appropriate times and each is
discussed in detail below.

Whenever a device driver routine is entered, the segment
containing the entry point will bs paged into Z-80 page-3,
Page-2 will always contain the system segment (segment
0FFh), and page-0 will of course contain the page zero
segment. In the case of the device channel calls, the
segment containing the channel descriptor and channel RAM
(see later) will:-be in page-1l, for other calls the contents
of page-1l will be undefined. The stack pointer will be set
to the system stack, in Z-80 page-2, and there will be at
least 100 bytes available on the stack, in addition to that
needed for interrupt servicing (only 50 bytes for an
interrupt routine).

When an device driver is called, register IY will always
contain the address of the DD_TYPE field of the device
descriptor, in 2Z-80 page-2. In the case of extension
devices (linked in from extension ROMs), this can be used
to access the device RAM which is allocated immediately
below the device descriptor in the system segment. A user
device may sometimes have to access RAM relative to its
device descriptor, which will not be in the system segment,
so it will have to page the correct segment in (remembering
to disable interrupts temporarily sine the stack will be
paged out). To enable a user device to do this, the
segment number of the segment containing its device
descriptor is passed in register B' whenever the device is
called.

~

r -1

F—u _ T _% 13

9 p-3 -3

- .
st .}

| J— -_a | S [

e

13

[TR Y

[

L.as L.a

a2 (4 t_a

L4 b_.a

e

L

29-Nov-84 EX0S 2.0 - Kernel Specification Page 25

Device driver routines can corrupt all registers,
including the 1index registers and the alternate register
set, since they will have been saved by EXO0S. The device
driver can also corrupt the contents of Z-80 page-l with
impunity, but should exercise caution with the other 2-80
pages. Generally registers A, BC and DE ars used to pass
parameters to and return results from the routines,

Device Initialisation Routine

The device initialisation routins 1s passad no
parameters (other than the s2gmant ana address oI the
channel descriptor in B' and 1Y), and returns no resualts,

It is called whan the device is first linked :n:ie cne
system, and again whenever a "reset EXOS" function call is
made , which occurs at a warm reset or whan new

applications program takes control.

Any channels which the device may have opan will wvanish
when this rourine is calleda, and so any variables or data
arcas whicn Lue device may keep must be reset. Note that
any RAM segments allocated to the device will not be tfread,
so the device must remember that it still has these aZlter
subsequent initialisations.

Channel RAM Allocation

Every channel which is open has an arsa of "channel RAM"
allocated to it. It is the job of the "open channel" or
"create channel" routines (described below) to make an
"allocate buffer" EXOS call to obtain the required amount
of RAM. The allocate buffer EXOS call will be described
later. This function call MUST be made berfore the open or
create channel routine returns to EX0S, even if zeroc bytes
of channel RAM are required, since it also sets up a
channel descriptor for the channel.

When the "allocate buffer" call is made, it will raturn
the address of the channel RAM in register IX. This will
be in Z-80 page-l and the correct segment will be paged
into page-l. Whenever the device driver is entered in
future with a channel call to this channel, page-l1 and
register IX will be set up correctly. If "n" bytes of
channel RAM are allocated then they can be accessed at
addresses:

IX-1, IX-2,, IX-n

The 16 bytes of RAM immediately above tha channsl RAM
(IX+0....IX+15) contain a channel descriotor. This
contains system information about the channel and should
not be modified by the device.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

5]
L

29-Nov=-84 EXOS 2.0 - Kernel Specification Page 26

In the case of non-video devices, the channel RAM will
all be in one segment. In the case of video devices
however, only a certain amount of the RAM, specified by the
device and starting at IX-1, will definitely be in one
segment, the rest may carry on down into other segments.
If this is -the case then each new segment will have a
segment number one less than the previous one and they will
all be video segments (0FCh to OFFh). This allows a video
device to obtain sufficient RAM for a large video page.
Normally only the built in video driver will be a video
Gevice, although any device can make itself one simply by
having a bit set in its device descriptor (see above).

Once allocated the channel RAM can be moved by EXOS.
This can only occur when another channel is opened or
closed, or a user device linked in. Since devices are not
allowed to make any of these EXOS calls, it is impossible
for the channel RAM to be moved while the device driver is
executing. Whenever the channel RAM is moved the "buffer
moved" entry point of the device driver will be called.
This entry point is described below.

The Buffer Moved Routine

The '"buffer moved" entry point is called by EXOS
immediately after it has moved a channel buffer of this
device. This routine returns no results but is passed the
following parameters:

b':IY = Device descriptor segment & address (as usual)
IX = New address of channel descriptor, will be paged
into Z2-80 page-l.
A = Channel number of channel buffer moved
BC = Amount that channel buffer has moved

The channel buffer may have been moved into a different
segment. If the devicz neesds to know this then it can read
the new segment number from the page-1 register. The
distance moved parameter in register BC is strictly
=naahing a signed 17-bit number, with the sign bit missing.
This means that if, for exampler, a value of 1 is passed in
BC, then this could mean that th: bulfer has bz2en moved
cither upo by 1 byte, or down by 65535 bytes. In practice
this difference does not matter since it only affrcts the
new sS2gmant number and this can b2 determinod separately.

Whenever the buffer moved entry point is called,
interrupts will b2 disablzd and should not be re-enabled by
th2 device driver. This is to ensure that the device's
interruot routin2 cannot b2 called while it is in an
intermodiate state.

(‘\

3y

s Wi, M, Mt

g " 3 o3 ey -y

~—

L

-3 ™

-

| S— | WY

[y

L—s L. Ah_o - . b

-

ST (R R

R

29-Nov-84 EXOS 2.0 = Kernel Specification Page 27

7.5 Device Interrupt Routines

EXOS can handle interrupts from any of the four possible
sources on the Enterprise computer (video, sound, 1lHz and
external). When an interruot occurs, EXO0S examines the
DAVE chip to determine which source it came from. It then
scans through the device chain calling the interrupt entry

point of any device which has requested servicing of this

type of interrrupt (by setting a bit in DD_IRQFLAG in its
device descriptor). When all devices have been called, the
interrupt is cleared in the DAVE chip, all registers and
paging restored and EXOS returns to the interrupted
program.

Interrupts are allowed at any time, including while
executing device driver code, except while certain system
variables are being updated or channel buffers are being
moved. Also, interrupts are disabled while servicing an
earlier interrupt, so there is no nesting of interrupts.
If an interrupt from another source occurs while already
servicing an interrupt then it will be held up until
servicing of the first one is complete. Thus no interrupts
should be missed but they may be serviced late.

The interrupt entry point of a device driver |is
optional, it 1is only required if the DD_IRQFLAG field of
the device descriptor is non-zero. When a device is linked
in, EX0S will ensure that any sources of interrupts which

- the device wants to service are enabled in the DAVE chip.

The device's interrupt routine will be entered just like
any other entry point, with registers B and IY sct up to
the device descriptor sagment and address as usaal. No
results are returnad from the interrupt routine and all
raglsters can be corrupted (AF, BC, DE, HL, IX, 1Y, AF',

BC', DE', HL'). The entry point will be called w.th
interrupts disabled and they should not be re-cnabled,
neire o should the device attemot to resat the intersupt
tlar ot oAV cnilp - EXOS does that.

Ltreta Li an EX0OS wvariable (sece later) called
IRQ_ENABLL_ STATE which dafines which of the rfour sources of
interrugts are Turr2uafly enabled. Any of them can be

enabled or dicaclou by changing this EXOS wvariable and
writing it out to the interrupt enable register in the DAVE
chip. This should be done with care since cthe keyboard
will not be scanned if video interrupts are disabled so it
can be dirficult to recover from this,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EX0S 2.0 - Kernel Specification Page 28

7.6 Device Channel Calls

The device channel calls are the device entry points
which correspond with EXOS function codes 1 to 11. Full
details of these EXOS calls can be found in a later
section. This section describes them only from the
device's point of view.

All of these routines have certain parameters and
results in common. These are:

Parameters: B':IY Device descriptor segment and address

IX = Pointer to channel RAM in Z-80 page-1l.
A = Channel number +1 (see next paragraph)
BC & DE = General parameters to routine
Results: A = Status code, returned to user
BC & DE = General results from routine

The channel number parameter pass2d to the device
routine is one greater than the channel number as specified
by the user. This is due to the way in which EXOS handles
channel numbers internally, and means that a device can
never be passed a channel number of zero.

The device driver does not nhed to return with the
status register set depending on tha value returned in A.
The setting of flags is done by EX0S before returning to
the user,

"

7.6.1 Open Channel and Create Channel Routines

For most devices the open channel and create channel
routines can be the same. The difference is only relevent
for file handling devices, where "open" is intended to open
an existing file and "create" is intended to create a new
ona.

The routine will be passed a pointer to a filename
string in DE (length byte first). This will have been
copied from the string passed by the user, into a buffer in
the system segment, and will have been uppercased and
checked for syntax and length (maximum 28 characters). If
no filename was specified by the user then this will be
a null string. .

The wunit number specified by the user (or a default)
will be passed in register C. Unit numbers are explained
in the section on the "open channel" EXOS function.

(--\

e

-

) Ty T Tty TR ey Ty —y 3

-

L, |

—

L |

[k |

LN |

L S

t_a

—— -— ‘.——J

| SR,

—

29-Nov-84 EX0s 2,

Assuming that the de
open channel call,
to setup the channel de
i it may need for
can be found in the sec
function call wil
and page it into page=1

call c€orrupting any unusual

7.6.2 Block Read and Wri

All devices must Provide a block read and a block
capable

routine, which

65535 bytes, Some de

0 - Kernel Specification Page 29

vice decides that it will accept the

it MUST make an "allocate buffer® call

scriptor and obtain any channel RaM
this channel, Details of this call
tion on EX0S function calls (later),
1l return a pointer to the RAM in IX
. This is the only case of an EX0OsS
registers or the pPaging.

te Routines

write
of reading or writing up to
vices (such as disk) will implement

these intelligently, doing data transfers directly into the

user's buffer,
calls to their own
copying the bytes into

Special care
buffer area, The
from the user's call,
of the four 2-80 pages,
in that page
called the device drive
therefore have to tra
page-1l, and page
the buffer, but
channel RAM in,
four wvariables
define the Ffour
call was made.
USR_P3 and their add
section. These variabl
will survive nested EX0

must

In or
are pr
segmen

that the

adjusted seve
correctly with a
returning a zero status

If an error occurs
write than registers
~their valuss correctly
bean read or Written,

ET10/10

However

buft
when the user

in the correct segment in

These are called

the segmant may nesd to be changed,

Copvri. e (C)

most devices simply do
character read or write
Or out of the buffer,

repeated
routines,

be taken with'accessing the user's
er pointer is passed in DE straight
This may point to any address in any
and refers to the segment which was
called EX0S, not when EXOS
r routine. The device driver wil]
nslate this address to one in z-80
order to access

not forget the segment with itsg
der to determine the segment number,
ovided in the system segment which
ts which were paged in when the EXOS
USR_PJ, USR_Pl, USR_P2 and
resses were given 1in an earlier
€s are handled re-entrantly, so they
S calls correctly,

user's buffer can Cross a segment
and the
should
simply

ral times, Also the device
block size orf Z2ero bytes,
code without doing anything,

block read or
returned with
how much has

part way through a
DE and BC should be
adjusted to indicate

QA Fegnea T imfe.

1984

Imte’igan+

s

29-Nov-84 EXOS 2.0 - Kernel Specification Page 30

EXOS VARIABLES

The "read/write/toggle EXOS variable"™ EXOS call, which
will be described later, provides a way for the wuser, a
device driver or a system extension, %to access a set of
system variables without knowing their actual address.

The<c variables control many aoects of the system,
particularly in setting wup options for devices before
opening channels to them. The ones= which ares rzlevant to

particular built in device drivers are describad in the
appropriate device driver specification but a comnlete list
is included here.

Each variable has an 8-bit valuz, and i3 identified Dby
an B8-bit EXOS variable number. This list includes all
variables which are implemented by the EXOS kernel but
thore is a facility for system ext2nsions to implement
further ones, with numbers above 127 (s2e next chapter).

Any variable can be set to any value irom z~ro to 255.
Howover many of the variables act as switch:s to turn
something on or off. In these cases, zero corresponds to
"on" and 255 to "ofi". The EXOS call to manipulate them
has a "toggle" function which does a ones complement of the
value and will thus switch from zero to 255 and vice versa.

0 - IRQ ENABLE_STATE b0 - set to enable sound IRQ.
b2 - set to enable 1Hz IRQ.
b4 - set to enable video IRQ.
b6 - set to enable external IRQ.
bl,3,5 & 7 must be zero.

1 - FLAG_SOFT_IRQ. This is the byte set non-zero by a
device to cause a software interrupt. It
could also be set by the user to cause a
software interupt directly. This wvariable
is also available at a fixed address given
in an earlier section.

2 - CODE_SOFT_IRQ. This is the copy of the flag set by
the device and is the variable that should
be inspected by a software interrupt service
routine to determine the reason for the
interrupt.

3 - DEF_TYPE Type of default device
0 => non file handling device (eg. TAPE)
1 => file handling device (eg. DISK)

4 - DEF_CHAN Default channel number. This channel
number will be used whenever a channel
call is made with channel number 255.

[l B i B ot BN gl

—— =9

| S

s b 1.4 s Loo Lo t.a b_-a

L_

Lo.cs

L4

29-Nov-84

@~]

10
11

12

13
14
15
16
17

18
19

20
21

22
23
24
25
26
27
28
29
30

32

ET10/10

TIMER

LOCK_KEY
CLICK_KEY
STOP_IRQ
KEY_IRQ

RATE_KEY
DELAY_KEY

TAPE_SND

WAIT_SND
MUTE_SND

BUF_SND

BAUD_SER
FORM_SER

ADDR_NET
NET_IRQ

CHAN_NET
MACH_NET

MODE_VID
COLR_VID
X_s1Z_VID
y_SI2_VID

ST_FLAG

BORD_VID
BIAS_VID

VID_EDIT
KEY_EDIT
BUF_EDIT
FLG_EDIT

EXOS 2.0 = Kernel specification page 31

1Hz down counter. Will cause a software

interrupt when it reaches zero and will
then stop.

current keyboard lock status
0 => Key click enabled
0 => STOP key causes soft IRQ

¢>0 => STOP key returns code

0 => Any key press causes soft IRQ, as
well as returning a code

Keyboard auto-repeat rate in 1/50 second
Delay 'til auto-repcat starts
0 => no auto-repeat

0 => Tape sound enabled

0 => Sound driver waits when queue full

¢>0 => returns .SQFUL error .. - .

0 => internal speaker active

<>0 => internal speaker disabled

Sound envelope storage size in 'phases'

pefines serial baud rate
Defines serial word format

Network address of this machine

0 => Data received on network will cause
a software interrupt

Channel number of network block received

Source machine number of network block

yideo mode N\ These variables select
Colour mode \ the characteristics of
X page size / a video page when it

Y page size / is opened
0 => Status line 1is displayed

Border colour of screen
Colour bias for palette colours 8...16

Channel number of video page for editor
Channel number of keyboard for editor
Size of edit buffer (in 256 byte pages)
Flags to control reading from editor

Copyright (C) 1984 Intelligeunr Softwarn Limited

)

29-Nov-84

33
34

. 35
36
37

SP_TAPE
PROTECT

LV_TAPE
REM1
REM2

EXOS 2.0 - Kernel Specification Page 32

Non-zero to force slow tape saving
Non-zero to make cassette write out
protected file

Controls tape output level

\ State of cassette remote controls,

/ zero is on, non-zero is off

r—

-

—

—

-3

| |

E TN

L_» b._a | N

.o

| Ny

s Lo

[G

e L3 Lkoa

t_J EL s (_»

| -

l..—-.

-/

29-Nov-84 EXOS 2.0 - Kernel Specification Page 33

9, SYSTEM EXTENSION INTERFACE

When EXOS does a cold start it builds up a list of all
extension ROMs which are plugged in. Each of these ROMs
has a single entry point which is called under various
cirumstances with an action coede to indicate what function
the ROM is to carry out. This chapter describes all the
action codes and what the response to them should be.

There 1is a facility to load programs into RAM and link
them in as system extensions. Details of how this is done
and the file format will be given in the next chapter.
Once loaded these RAM extensions are treated exactly as 1if
they were ROM extensions, and will only be removed when a
cold resst is done.

There is an EXOS call provided to pass a string around
all system exctensions to give them a chance to carry out
some function. This results in the extensions being called
with action code 2 (command string) or 3 (help string), the
meaning of which will be explained 1in this chapter.
Details of the "scan extensions" EXOS call itself will be
given in the section on EXOS calls later.

Calling System Extensions - General

System extensions are called by the EXOS kernel and will
always be entered in 2-80 page-3 at their single entry
point. Page-2 will contain the system segment (segment
0FFh) which will include the stack, and page-0 will of
course contain the page zero segment. ROM extensions can
bz allocated an area of RAM at cold reset time (sez below).
The segment containing this RAM will be in page-l, and it
will be pointed to by register 1Y. For RAM resident
extensions, page-l and register IY will be un-defined.

Note that ROM extensions are allowed to make "scan
extansion" EX0S calls while 1in their "allocate RAM"
routines. This can result in a ROM being entered with
action code 2 or 3 before it has had any RAM allocated.
This case can be detected by testing for segment number
zero in Z-80 page-l, which can only occur before RAM is
allocated, or if no RAM is requested.

An action code is always passed in register C, and
registers B and DE are used for passing various parameters
to, and returning results from, the system extension. 11
other registers (AF, HL, 1IX, AF', BC', DE', HL') can be
corrupted if desired.

ET10/10 Copyright (C) 1984 Intelliacent Software Limited

F

29-Nov-84 EXOS 2.0 - Kernel Specification Page 34

System extensions are normally called by doing an
"extension scan", which may originate from a user EXOS call
or be generated by the kernel. This involves passing the
same action code and parameters to each system extension in
turn. If the system extension returns the action code
unchanged, then the values passed back in BC and DE will be
passed on to the next extension in the list. Thus if a
system extension does not support a given action code or
command it should return BC and DE unchanged to ensure that
the scan continues.

If a system extension returns with register C set to
zero then the extension scan will stop, and the values
returned in registers BC and DE will be considered as the
results - the interpretation depending on the action code.
In this case, the value returned in register A is a status
code indicating success or failure using the normal EXOS
status code values.

The extension scan calls any RAM resident extensions
first, followed by any extension ROMs. The very last
extension in the chain is the built in word processor
program.

Action Codes

Below are detalis of each of the action codes. Any
values not included here are reserved for future extensions
and should be ignored by all system extensions, simply
returning with BC and DE unchanged. The action codes are
described in numerical order although the initialisation
and ram allocation ones are rather special cases.

A system extension can ignore any of these action codes
which it wants to, they are all optional. Any action code
which is not supported should be ignored by returning with
BC and DE preserved. It is acceptable (although not very
useful) for a system extension to consist of just a "RET"
instruction at its entry point.

The action codes provided are:

1. Cold reset

24 Command string

3. Help string

4, EXOS variable_

5. Explain error code
6. Load module

7. RAM allocation

8. Initialisation

)

‘f'\

~— ~— ~ £ - r=m ~— Lo | ~—

“

r—

r—y

-~

7/ 29-Nav-84 . EXOS 2.0 - Kernel Specification Page 35

~f

/ 9.2.1 Action code 1 - Cold Reset

1 This action code is passed around all ROM extensions at
it cold reset time, when the copyright display program

| N

[

[Ao o

| —

b a

S

s a_ 4

| -

terminates, in order to allow one of them to select itself
as the curraent applications program. The only other time
when this action code can be received is when an attemot to
load a new aonlications program fails (see section on
"loading tunctions"). No parameters are passed and no
results are returna2d with this action code.

If the extension wants to set itself up as the current
applications procran then it simply goes through the normal
startup procedure (described below) and does not return
from this call. If the extension does not want Lo do this
then 1t Jjust returns from this call with register C (the
action code) preserved.

9.2.2 Action code 2 = Command string

This action code results from a "scan axtensions" EXOS
call. It is passed a pointer to a string in register DE.
This string will have a length byte first and will be
stored in a buffer on the stack, so the "scan extensions"
call 1is re-entrant. The first word of the string (up to
the first space character) will have been uppercased and
register B will contain a count of how many bytes there are
in this first word.

The first word is the name of a command, service or
program. Each extension will have a set of commands which
it recognises. If the extension does not recognise this
command then it should return from the call, preserving BC
and DE, If it does recognise the command then it should
respond to it, possibly interpreting the rest of the string
as parameters, returning with register C=0, and a status
code in A, wunless it wishes other extensions to also
respond to this command.

In carrying out the command the system extension can
make any EXOS calls required, including further '"scan
extension" calls, It is often useful to make use of the
de fault channel number for doing screen input/output since
it cannot know what other channels are available.

The extension can interpret the command string as a cue
to start itself up as the current applications program.
For example the strings "BASIC", "LISP" and "FORTH" will be
interpreted in this way by the appropriate language
cartridges. In order to do this the extension behaves
exactly as if it had received action code 1 (cold start).
Details of the startup procedure are given below.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov=-84 EXOS 2.0 - Kernel Specification Page 36

9.2.3 Action code 3 - Help string

This action code also results from a "scan extensions"
EX0OS call, where the first word of the string was "HELP".
The "HELP" (and any trailing spaces) will have been removed
from the string and then the rest of the string treated
exactly as if it was the original string passed to the EXO0S
call. The parameters for this action code are thus
identical to those for action code 2 (command string)
describsd above. 4

If the string is null (register B will be zero), then
this is a gzneral HELP call to all extensions. In this
case the extension should just write its name and version
to the default channel (using channel number 255) and
return with BC and DE preserved.

If the string is not null, and the first word is any
of the action code 2 commands recognised by this extension,
then specific help information about that command should be
printed to the default channel, and register C returned as
zero, with a status code in register A (normally zero). If
desired the rest of the string can be interpreted as
further parameters to control what information is
displayed. F

If the string is not null and the first word is not a
valid command for this extension then registers BC and DE
should be returned unchanged.

9.2.4 Action code 4 - EXO0OS variable

This action code results when a "read/write/toggle EX0S
variable" call was made with a. variable number not-
recognised by the internal ROM (see previous chapter).
It allows system extensions to implemznt additional EXOS
variables and may be particularly useful for extension ROMs
which also contain extension devices. The parameters
passed are:

B =0, 1 or 2 for READ, WRITE and TOGGLE (ones complement)
E = EXOS variable number
D = New value to be written (only if B=1)

If the wvariable number is not recognised then the
extension should return with BC and DE preserved. If the
variable number is one supported by this extension then the
appropriate function should be performed and the following
parameters returned:

A = status (normally zero)
G =0
D = New value of EXO0S variable

—

Lo | ~ L | ™ M . o, | - — Ty =

/1

| S—)

| S—

[

| S

| WY

| W— Loassd bed A_a | P | — Aa h.a

eed

29-Nov-84 EX0S 2.0 - Kernel Specification Page 37

To avoid conflict with the internal EXQS variables, and
any others which may be added in future versions or
extensions, system extensions should only use EXOS variable
numbers of 128 and above.

9.2.5 Action code 5 - Explain error code

This action code results from a user ‘"explain error
code" function call. The error code is passed around all
system extensions to give them a chance to provide an
explanation string. The internal ROM provides explanations
for all error codes which can generated by the EX0S kernel
or any of the built in devices, wunless a system cxt2nsion

“returns a string first.

The error code is passed in register B and if it is not:
recognisad the extension should just return with roegister
BC presearved. To avoid conflict with the built in error
codes, and any new ones in future versions or extensions,
extension ROMs should only use error codes bzlow 7Fh for
errors which they generate themselves.

If che error code is recognised then a pointer to an
ASCI[<«ola tion string (lz2ngth byte first, maximum length
64 characters) should be returned. This can be 1in any
segmant and need not be paged in to the 2Z-80 memory space
when the extension returns. The results returned are:

A - not requirz:d, can be any value
B = Segment number containing message
c=0
DE = Address of message string (can be in any Z-80 pacge)
9.2.6 Action code 6 - Load module

The details of the Enterprise file module format will be
described in the next chapter. This action code is passed
around system extensions when a module header of an
unrecognised type is read in by EX0S, before returning an
arror to the user. It allows a system extension to handle

loading of its own module types without requiring any
special commands.

The extension is passed a pointer to the module header
(16 bytes) which will be in the system segment, and also
the channel number to load from: :

B = Channel number to load from
DE = Pointer to 16 byte module header

ET10/10 Cooyricht (C) 1984 Intelligent Software Limited

2.//

29-Nov-84 EX0S 2.0 - Kernel Specification Page 38

The type byte (at DE+l) should be examined to see 1if
this is a module type recognised by this extension. 1If not
then it should return with BC and DE preserved. If the
module type 1is recognised then the rest of the module
should be -read in from the specified channel, possibly
using other parameters from the header, and initialised if
this is necessary. Register C should bz returned zero, and
a status code in A which should be zero if the loading was
successful and some error code if not.

9.2.7 Action code 7 - RAM allocation

This action code is rather special since it is only ever
called at cold start time, and is only received by ROM
extensions. It will only be called once and will always be
the first call which the EXOS kernel makes to the ROM.
However, as noted above, it is possible for a ROM to be
entered with action code 2 or 3 before having any RAM
allocated, so if the ROM expects to have RAM it must test
for this case by looking for segment zero in 2-80 page-1l.

If the ROM does not require any RAM allocation then it
should simply ignore this action code, returning register C
unchanged. In this case, when future calls are made to
this ROM, Z-80 page-l and register IY will be undefined
since there is no RAM area for them to point to.

If the ROM does require RAM to be allocated then it
should return the following results:

C =0 (To indicate RAM is required)
B = RAM type flags. b0 - set for page-2 RAM
bl - set for page-l RAM
b2..b7 - not used. zero.
DE = Number of bytes required

The ROM can be allocated one of two types of RAM,
Pagr-2 RAM is allocated in the svsticm segment and so the
extension can address it regardless cf what it puts in Z-80
page-1. The amount of page-2 RAM is limit2d sincn it must
all be in one segment and this segment is uvsed for many
other purposes. The other type of RAM allocation is page-1
RAM. This is allocated in a segment which the zystem marks
as a device allocatzd segment, and can b2 up to very nearly
16k. If this type of allocation is used then more RAM is
available, but a whole_ segment will be taken away from the
user., Several extension RAM areas can be put in one
segment, and the same segment can also be used for loading
the code of relocatable or absolute system extensions into
(sn> next chapter).

71 "3 =3 31

ey

-9

[S—

e

LY

ho-a

[—

| R— —

| —1

[—

— |

29-Nov=-84 EXO0S 2.0 - Kernel Specification Page 39

The type of RAM allocation required is specified by a
pair of flags passed back in register B. If the page-2
flag (bit-0) is set then the RAM will be allocated in the
system segment if possible. If the page-1l flag (bit-1) is
set then a separate device segment will be used. If both
flags are set then the system.segment will be used if there
is enough space, otherwise a separate device segment will
be used.

If the RAM allocation is successful then the address and
segment of the RAM area will be saved in the ROM extension
list along with the ROM number. Whenever the ROM is called
in future the RAM segment will be put in Z2-80 page-l and
register IY will point to the RAM area. If the page-l flag

(bit-1 of register B) was clzar, so the RAM was allocated.

in the system segment, then register IY will point to the
RAM area in Z-80 page-2. In all other cases IY will point
to the RAM in Z-80 page-l, even if the RAM is actually in
the system segment (both flags set). If "n" bytes of RAM
were requested then they can be accessed at addresses:

I¥+0, I¥+l,, I¥+(n-1)

If the RAM allocation failed because there was not
enough RAM available then this extension ROM will be marked
as invalid in the ROM list and will never be entered again.

Note that the call with this action code is made very
early on in the system initialisation, before device
drivers have been linked in or 1initialised. Some EXOS
calls are allowed but any of the device related calls (open
channel, 1link device and so on) are not. Generally care
should be exercised with EX0S calls made during RAM

“allocation. As mentioned before, a "scan extensions" call

is allowzd, and it will scan all ROM extensions, even those
which have not yet had RAM allocated. This is tha only
cas2 in wnich an extension ROM can be entered before naving
its RAM allocated - care must be taken with this.

2.8 Action code 8 - Initialisation

Systen ocxtensions are initialised immediately after
aeviers hav: bez:n inicialised. This is done initially at
colda resst time (for ROM extensions), and again whenever an
"EXOS rz2set" call whith the aporoporiate flags set (see
later) is made. Thi: occurs when a warm reset happens and
also wh2n a now wolicacion program takes control. R AM
resident extensiuns are also initialised immediately alfter
they hava been loadad. No parameters are pa=s2d to -the
extensions and no results are returned. Register C {the

action code) should be preserved but all other registers
can be corrupted.

ADQUIPMENT BV
INDUSTRIZV/IG 10-12
FCOTTUS 31!
3440 200 W ILWOEN
TEL Gaiad - 1oyal

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 40

9.3

Starting a New Applications Program

A system extension may decide to start itself up as the
current applications program as a result of a call with
action code_ 1 or 2. To do this the following procedure
should be carried out.

g Do an "EXOS reset" call with the reset flags set to
60h (see later). This will de-allocate user RAM,
abolish any opened channels, re-link and re-initialise
all built in and extension devices, abolish any user
devices and re-initialise extension ROMs (including
the one making the call). It will return with
interrupts disabled.

2. Set up a user stack somewhere in the page zero
segment, since no other RAM is available, and then re-
enable interrupts.

3. Allocate any additional RAM segments which are needed,
and open any default channels.

4. Set up a warm reset address for when the reset button
is press=d. This should be done even if the program

does a complete restart for a warm reset, to ensure
that any RAM resident system extensions will remain
resident.

5. Set up the default channel number to th2 program's
normal screen 1/0 channel (usually an editor channel),
to allow system extensions to print their help
messages.

After doing this, it is in full control as the current
applications program and can make any EXO0S calls.

f"'.

)

‘r\

L |

N

. |

=3 w3 e 3 Y vy vy w3 vy

L, |

[Sp—

[

[— a4 L. k. h.a k. sl [—

| —

L—a

Ll

29-Nov-84 EXOS 2.0 - Kernel Specification Page 41

10. Enterprise File Format and EXOS Loading Functions

J 10.1 Enterprise File Format

All files which are to be loaded by EX0S should follow
the format described here. ~ It is designed so that the
operator of a program such as BASIC can simply give a
command such as "LOAD"™ without knowing what he is going to
load. It could be a BASIC internal format program, or it
could be a new device driver in relocatable format, to name
but two.

A file consits of a series of one or more modules. Each
module starts with a 16 byte module header which defines
what type of data is to follow in the rest of the module.
A file can contain several modules so that, for example a
BASIC program can be loaded at the same time as a new
device driver which the program uses, simply by having them

g as two modules in a single file,

‘The header starts with a null byte (zero) to indicate
that it is an Enterprise module header, rather than for
example an ASCII text file. Any files which do not start
will a null will be referred to as ASCII files although
they may be any other sort of data.

Following the null is a type byte, which specifies what

J type of data the rest of the module contains. The next 13
bytes are different for each type and contain various other
parameters such as size and entry point addresses. The

very last byte of the header is a version number and should
always be zero for current versions,

10.1.1 Module Header Types
The defined types of module are:

- S$SASCII ASCII File

- Not used

- S$SREL User relocatable module

- S$SXBAS Multiple BASIC program
$$BAS Single BASIC program

- S$SAPP New applications program
$SXABS Absolute system extension

Wao

L TR, W B, O O
] I

7 - S$SXREL Relocatable system extansion
® - SEDIT Editor document file
Siﬁ - '$$SLIsp Lisp memory image file
1of{ - SSEOF End of file module
12...31 - Reserved for futura use by IS/Enterprise

Type zero is recognised as an ASCII file to recuce tho
possibility of an ASCII file being mistaken for an
Enterprise module header. This will be explaincd in the
saction below on the EXOS loading functions.

ET11710 it I0Y TORA Tnrallimant CafFrgara Fimikasd

'.'J‘

29-Nov-84 EXOS 2.0 - Kernel Specification Page 42

When a module has been loaded another module may follow,
so the system will attempt to load another header. It ‘is
therefore necessary to end each file with a module header
with the "end of file" tyo~ (t'np» 11) to indicate that
there is no more to load.

Header types 4, 5, 9 and 10 are specific to particular
languages or devices and are describ d in ths documentation
for those programs (IS-BASIC, 1S-LISF and iho EXOS editor).
They will not be mentioned further here.

Of the remaining types, numbers 6, 7, and 8 are handled
entirely by the EXOS kernel, and type 3 is handled mostly
by the kernel but with some interaction by the applications
pragram. All of thesz tyoess will be described in the
iollowing sections.

.2 Loading Enterprise Format Files

When the user wants to load a file, he should ensure
that the channel to locad from is open and then make a "load
module" EX0S call. This will read one byte from the
channel and immediately return a .ASCII error, with the
character code in register B, if the byte is non-zero.

If the first byte is zero then another byte (the type
byte is read). If this is zero then it is an ASCII file so
a .ASCII error is returned, with the type byte (zero) in
register B. This ensures that if an ASCII file starts with
a series of nulls then it will be recognised as an ASCII
file and only the first null will be lost.

If the type byte 1is non zero then it 1is saved and
another 14 bytes read in to complete the module header. 1If
it 1is an end of file header (type 11) then a .NOMOD error
will be returned. This should be trapped by the wuser
program since it is not really an error, it is the normal
terminating condition.

If the module is a type which is handled internally by EXOS
(type 6, 7 or 8) then the rest of the module will be loaded
in and initialised (details are given in the following
sections). If it is not a type handled by EXOS then the
module header will be passed around any system extensions
to give them a chance to load it if they recognise the
type. If the module is loaded in either of these ways then
a zero status code will be returned to the user.

Assuming that the module was not loaded by EX0S or by a
system extension then a .ITYPE error will be returned to
the user, and the module header copied into a buffer passed
by the user. The user can then look at the type byte and
load the rest of the module if he recognises it,

~

-

- -y -

~y

an Biam BiG8 |

e

=

7

| pp— | S—

[

| W L

e beu kg b a

L

{ I |

- e i

{

29-Nov-84) EX0S 2.0 - Kernel Specification Page 43

When a module has been loaded, by the user, by EX0S, or
by a system extension, another "load module" call should be
made to load in the next module of the file. This will
continue until a .NOMOD error is received from EX0S, which
is the normal termination, or a fatal error occurs, either
from the loading channel or an invalid module, which will
result in an error response.

10.3 Relocatable Data Format

EXOS supports the loading of relocatable modules using a
simple bit stream relocatable data format. There are two
types of relocatable modules, user relocatable modules and
relocatable system extensions. These module types and how
they are loaded will be described in later sections, this
section just describes the relocatable bit stream format
itself.

The data of a relocatable module is a bit stream in the
sense that individual data fields are'a variable number of
bits and are not aligned on byte boundaries. The bytes of
the data are interpreted most significant bit first, so the
first bit of the bit stream is bit=-7 of the first byte.

A complete relocatable module consists of a sequence of
items which are defined by sequences of bits in the bit
stream. The following diagram shows the decoding of the
bit stream into the various items. The items themselves
are explained afterwards.

0 -> 8-bits load absolute byte

1 00 -> 1l6-bits load relocatable word

. 0100 =-> 2-bits set run time page

i o =D restore run time page

o s L -> l6-bits set new location counter

. 10 -> end of module

. 11 -> illegal - for future expansion

10.3.1 Location Counter and Run Time Page

When the relocatable loader is called it is passed a
starting address which can be in any %Z-80 page. It loads
the data into whatever segment was in that page, and must
not cross a segment boundary. It keeps a location counter
which is the current address it is storing bytes at and 1is
also wused for loading relocatable words. This location

counter is initially set to the start address passed to the
loader.

If a "set new location counter" item is found then the
following 16 bits form an offset which is added to the

current location counter. Adding this offset must not move
the location counter into a new page.

ET10/10 Cooyright (C) 1984 Intelligent Software Limited

q?

20-Nev-R4 EXOS 2.0 - Kernel Specification Page 44

It is often useful to have sections of code loaded into
a segment which will be accessed in different 2Z-80 pages,
since the segment can be paged into different pages. This
is particularly true when crsating wuser device drivers
which may be loaded into page-0, but when executed will run
in page-3. It is to provide this facility that the "set
run time page" and "restore run time page" items are
provided.

When a "set run time page" item is found, the following
two bits define a new page. The top two bits of the
location counter will be set to this new page setting.
This will not affect where bytes are actually loaded since
the page is irrelevant, as they are always loaded into a
single segment. However it will affect the values produced
for relocatable words which are loaded. This means that
code can be loaded in one page to run in another.

The "restore run time page" item will set the page of
the location counter back to what it was when the loader
was called, regardless of any new pages which have been set
since then.

10.3.2 Relocatable Words and Absolute Bytes

When a "load absolute byte" item is found, the following
8 bits are stored at the current location counter address
and the location counter incremented by one. When a "load
relocatable word" item is found, the following 16 bits are
read and the current location counter added on to them.
The resulting word is stored low byte first at the location
counter address and the location counter is incremented by
two.

10.3.3 End of Module Item

When an "end of module" item is found it will terminate
the relocatable loader. Any remaining bits in the last
byte will be padded out with zeros and the following byte
will be the start of the next module header.

10.4 User Relocatable Moduies

User relocatable modules are loaded into user RAM and
are regarded as being part of the current applications
program once loaded. It is the responsibility of the user
to organise allocation of RAM for them to be loaded into.
They are useful for providing user device drivers, indeed
the interlace wvideo driver which is provided with the
Enterprise computer is loaded as a user relocatable module.

L —y ~

-

Y9 Ty Y vy e ey ey ey ey ey

L.)

-

[

| — | —_—
N

| —

| —y

| 1

tood b b s L.
-~

| S HE— | | W——

| B

'S

29-Nov-84 EX0S 2.0 - Kernel Specification Page 45

The module header for a user relocatable module is:

0 - zero
1 - module type (2)
2..3 = Size of code once loaded
4..5 = 1Initialisation coffset (0FFFFh if none)

6..15 - zero

When an EXOS "load module" function call finds a header
of this type, it will not recognise it but will just return
a .ITYPE error to the user. The user then looks at the
type and sees that it is a user relocatable module. The
size field in the header defines the complete size of the
module once it is loaded. The user must find an area of
RAM of this size, 1in one segment which he can allocate
permanently, and pass this address to a "load relocatable
module" EXO0S call, along with the channel number.

EXOS will load the module into the RAM and then return
to the user with a zero status code if there was no error.
If the initialisation offset is not' OFFFFh then the user
should call this address (the offset is from the initial
loading address). This routine will do any initialisation
of the module which is required. For example in the case
of the interlace video driver, the initialisation will link
it into EXO0S as a user device.

10.5 Relocatable and Absolute System Extensions

Relocatable and absolute system extensions are loaded
automatically by EXOS when the appropriate module header is
found. They are loaded into segments which EXOS marks as
allocated to devices and will therefore never be freed.
Once loaded they function exactly like ROM based system
extansions, with a single entry point which is passed
action codes. Operation of the extensions once loaded was
described in a previous chapter, this section just covers
the actual loading and header format.

EXOS maintains a list of segments allocated in this way.
They can be wused for loading relocatable and absolute
extensions, and also for allocating RAM to ROM exten-ions
at cold start time. Absolute extensions always go at the
bottom of a segment and so there can only be one per
segment. Relccatable extensions and RAM areas for ROM
extensions are allocated from the top of a segment
downwards and there can be as many of these in a segment as
will fit,

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 46

The module header format for the two types is the same
except for the type byte:

0 = zero
1l =-. module type (6 for absolute, 7 for relocatable)
2..3 - Size of code once loaded (< 16k)
4..15 - zero

EXOS will first allocate enough RAM to load the
extension into, which may require allocation of a new
segment or may be able to make use of a space in an earlier
segment. The data will then be loaded into the segment.
In the «case of an absolute extension the data will be
loaded with the first byte going at address 0C00Ah, which
will be the entry point of the extension. For relocatable
extensions the code will be loaded anywhere in the segment
(addressed in Z-80 page-3) and the entry point will be the
very first byte loaded.

If an error occurs in loading than the extension will be
lost and the RAM for it will be de-allocated which may
involve freeing a segment if it was a newly allocated one.
If no error occurs then the new extension will be linked on
to the start of the list of system extensions and then
initialised, as described in the chapter on system
extensions. Control will then return to the user in the
usual way.

10.6 New Applications Programs

The "new applications program®™ module type is loaded
automatically by EXOS when the header is found. It can be
used to load programs of up to 47.75k. The program it
loads will automatically be started up as the new
applications program, 1losing the previous one. It is
intended for loading programs such as machine code games
from cassette although it will have other uses.

The module header format is:

0 - zero
1 - module type (5)
2..3 = Size of program in bytes (low byte first)
4..15 = zero

EX0S will look at the size of the program and work out
if enough wuser RAM can bz allocated to 1load it into,
allowing for a shared segment but without closing any
channels. If there is not enough then a .NORAM error is
returned, otherwise EXOS will commit itself to loading the
file.

r-

-y L | L | [e | i, | [anel, |

L |

—\ &y

Lo |

b L3 bead bd A d b Ao - L_. 2

[

29-Nov-84 EX0S 2.0 - Kernel Specification Page 47

Having reached this stage it will allocate the necessary
user RAM segments for the program and from this point on it
cannot return to the current applications program since it
will have corrupted the RAM it was using. If an error
occurs from herea on then it will display an error message
on the default channel and then scan all extensions with
the cold start action code. This is the only time that
extensions can receive a cold start action cold other than
at a genuine cold start.

Cnce thz reguired segments have been allocated the new
program will be read in from the channel and stored as

absolute bytes starting at address 100h. When the whole
program has bsen loaded, EXOS will simulate a warm reset to
the start of the wvrogcam at 100h. This warm reset will be

done with the reszc flags set to 20h (see later) which will
completely reset the I/0 system, without disturbing user
RAM. The new applications program will have to go through
the normal startup procedure (described earlier), except
that it needn't do another EXOS call.

Since user segments may have had to be allocated to load
the program in, the program may be occupying a shared
segment. If this is the case then the user boundary will
have been set to just above the end of the program to allow
as much RAM as possible for opening channels etc.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

iy

29-Nov-B4 EX0OS 2.0 - Kernel Specification Page 48

11. EXOS Function Calls in Detail

This chapter contains details of all the EXOS function
calls. Many of them have been described earlier in general
terms. This section concentrates on details such as
register usage and error codes, and describes the function
calls from the point of view of the program making the
call.

Parameters are passed to EXOS calls in registers A, BC
and DE, and results are passed back in the same registers,
Register A returns a status code which is zero if the call
was successful and a non-zero error code otherwise. All
other registers (BEL, IX, IY, AF', BC', DE', HL') are
preserved by all EXOS calls, and also the user's paging is
not disturbed. EXOS calls can be made from any address in
any 2-80 page, and the user's stack can be in any of the
four pages.

11.1 Device Name and Filename String Syntax

f The "open channel" and "create channel" function calls
take a string parameter, This string defines which device
driver the channel is being opened to, and also specifies a
unit number and filename. The syntax of the string is: -

[[device=-name] [["-"] unit-number] ":"] [file-name]

where [] denotes an optional part and "" delimits
literal characters.

The device name can be up to 28 characters and must be
entirely letters, which will be uppercased before using so ~

case is not significant. If it is not present then EXOS
will wuse a default device name which can be set with a
"de fault device name" EXOS call (code 19). If the unit

number 1s also absent (see below) then the default unit
number, which can also be set with this call, will be used.

The unit-number, if present, can be seperated from the
device name with a single "-" (minus) character if desired
or it can immediately follow it, The unit number consists
of a series of decimal digits which will be converted into
a one byte value by EXO0S,. If the device name is specified
with no unit number, then a default unit number of zero is
used.

Th2 optional filename consits of up to 28 characters

which can include letters, digits and the special
characters "\/-_." (not including tha quotes). letters
will be uppercaszd before the string is us-»d. Tf there is 7

no filename then it will just b2 taken as th> null string.

| S

29-Nov-84 EXOS 2.0 - Kernel Specification Page 49

The filename and unit number will be passed through to
the device driver for interpretation. However if the
device driver has the DD_UNIT_COUNT field in its device
descriptor set then some manipulation of the wunit number
will occur.

| —
L

L]

_‘T If the DD_UNIT_COUNT field is set to "N" then this means
that the device driver only accepts unit numbers in the

s range [0 ... N=1]. 1If the unit number is greater than this
then it will be reduced by "N" and the search of the device

- chain will continue. When another device of the same name
is found the process will be repeated and if it 1is now

" within range then the device will be called with the

Z reduced unit number. In this way several devices with the
same name can be supported, with the distincion being by

3 unit number. This is not used by any built in devices but

J could be used by add on disk units.

(

L

4 11.2 Function 0 - System Reset

] Parameters: C = Reset type flags

J Results: A = Status (always zero but flags .>t set

Interrupts disabled
I This call causes a reset of EX0S. The flags passed in
L ragister C control exactly what the RESET doces, as below.
B e B3 must be zero

| —y

} b4 - Set => Forcibly d=z-allocate all channel RAM, and
re-inttialisy all devices. User devices
wlll be retained.

| Np—

-

bS5 - Set => As bit-4 but also re-link in all built in
and extension d:vices, and re-initialise
system extensions. User davices will be
lost. Device segments are not de-allocated.

|]

|)

Lt} bé - Set => De-allocate all user RAM segments.

) & b7 - set => Cold reset, This is equivalent to
) switching the machine off and on again. All
RAM data is lost.

] Note that the status register is not set to be
2 consistent with the status code (which 1is always zero

anyway) and registers BC', DE' and HL' are corrupted by
) this EXOS call. Also a side effect of the call is that
i interrupts are disabled.

) An automatic RESET call (with flags set to 20h) is done

when a warm reset occurs. Also a RESET (with flags set to
60h) must be done by a system extension when it takes
control as a new current applications program.

ET10/10 Coovright (C) 1984 Intelligent Software Limitaed

Uy

(Ve

29-No

11.3

v-84 EX0S 2.0 - Kernel Specification Page 50

Function 1 - Open channel
Parameters: A channel number (must not be 255)
DE pointer to device/filename string
Results: A status

The format of the filename string was specified above.
The filename and wunit number are passed to the device
driver for interpretation and many devices will just ignore
them. If the device is one which supports filenames then
it will return an error code if the file specified does not
already exist. Some devices require options to be selected
(by special function calls) before the channel can be used.
Also some devices require parameters to be specified by
setting EXOS variables before a channel can be opened.

The wunit number is ignored by all built in devices
except the network driver. If a device name with no unit
number 1is specified then a default of zero is used which
devices could translate into their own internal default if
desired.

For the open channel function to be successfully
completed, the device must allocate itself a channel buffer
before it returns and an error may be returned if there is
insufficient RAM available.

11.4 Function 2 - Create channel

11.5

Parameters: A channzl numb2r (must not be 255)
DE pointer %o davice/filename string
Results: A status

The create function is identical to ther an~n function
except that if the device suoports filenam~s, :thon the file
will b2 created if it doesn't exist, and an error code
returned if it does. It is identical to OPEN CHANNEL for
all built in devices except the cassette driver.

Function 3 - Close channel
Parameters: A channel number (must not be 255)
Results: A status)

Tha close function flushes any buffers and de-allocates
any RAM used by the channel. Further reference to this
channel number will result in an error. The device's entry
point is called before the channel RAM is de-allocated.

- 9 Pk - 2

£

12

2

| el |

-n

| — | ——Y [

| N—

Lo hw b A 2 ks b v s s

S |

(™

29-Nov-84 EXOS 2.0 - Kernel Specification Page 51

11.6 Function 4 - Lestroy channel

Parameters: A channel number (must not be 255)
Results: A status

The destroy function is identical to the close function
except that on a file handling device the file is deleted.
It is identical for all built in devices.

11.7 PFunction 5 - Read character

Parameters: A channel number
Results: A status
B character

The read character call allows single characters to be
read from a channel without the explicit use of a buffer.
If no character is ready then it waits until one is ready.
This call is passed directly through to the device driver.

11.8 Function 6 - Read block

Parameters: A channel number
BC byte count
DE buffer address
Results: A status
BC bytes left to read
DE modified buffer address

The read block function reads a variable sized block
from a channel. The block may be from 0 to 65535 bytes in
length and can cross segment boundaries. Note that the
byte count returned in BC is valid even if the status code
is negative, although not if it is an error such as non-
exlistent channel. This allows a partially successful block
write to be re-tried from the first character which failed.
This cuall is passed directly through to the device Jdriver.

11.9 Function 7 - Write character

Parametars: A channel number
B character
Results: A status

The write character function allows single characters to
be written to a chunnel. This call is passed directly to
the device driver.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

U

v

29-Nov-64 EXOS 2.0 - Kernel Specification Page 52

11.10 Function 8 - Write block

Parameters: A channel number P
BC byte count
DE buffer address
Results? A status
BC bytes left to write
DE modified buffer address

The block write function allows a variable sized block
to be written to a channel and is similar to block read.
The byte count returned in BC is valid even if the status
code 1is negative. This call is passed directly through to
the device driver

11.11 Function 9 - Channel read status

Parameters: A channel number
Results: A status
C 00h if character is ready to be read

FFh if at end of file
0lh otherwise.

The read channel status function call is used to allow
polling of a device such as thz keyboard without making the
system wait wuntil a character is ready. This call is
passed dirsctly through to the device driver.

11.12 Function 10 - Set and Read Channel Status

channel number

Parameters: A
C Write flags (“
DE pointer to parameter block (16 bytes) !
Results: A status
C Read flags

This function is wused to provide random access
facilities and file protection on file devices such as disk
or a RAM driver. The format of the parameter block is:

bytes: 0...3 = File pointer value (32 bits)
4,..7 - File size (32 bits)
8 - Protection byte (yet to be defined)
9...15 - Zero. (reserved for future expansion)

b

—-p oe-9 _-) wv-3 3 e\

[|

— r—s

-

E__N

.‘/ 29-Nov-84 EXOS 2.0 - Kernel Specification Page 53

b3 ks o

k

bow

[T

t——‘

— L > B

The assignment of bits in the read and write flags byte
is as below. The specified action is taken if the bit 1is
set.

WRITE FLAGS READ FLAGS
b0 Set new pointer value File pointer is valid
bl not used (0) File size is valid
b2 Set new protection byte Protection byte is wvalid
b3...b7 not used (0) always 0

This allows the file pointer and/or the protection byte
to be set independently, or just to be read. Not all
devices need to support this function, indeed none of the
built in devices support it. If a device doesn't support
it then it should return a .NOFN error code.

11.13 Function 1l - Special function

Parameters: A channel numbar’
B sub-function number
C unspecified parameter
DE unspecified parameter
Results: A status
C unspecified parameter
DE unspecified parameter

This function call allows device specific functions to
be performed on a channel. If it is not supported by a
device then a .ISPEC error will be returned.

The sub=-function number specified in register B

determines which special function is required. Sub-
function numbers should be different for all devices,
unless eguivalent functions are implemented. The special

functions for built in devices are (see device driver
specifications for details):

@@pIsP = 1 VIDEQO - Display page

@RSIZE = 2 VIDEO - Return page size and mode
@eADDR = 3 VIDEO - Return video page address
@@FONT = 4 VIDEO - Reset character font
@QFKEY = 8 KEYBOARD - Program function key
@@JoY = 9 KEYBOARD - Read joysick directly
@@FLSH = 16 NETWORK = Flush output buffer
@@CLR = 17 NETWORK - Clear input and oucput buffers
B@MARG = 24 EDITOR - Set margins

@@CHLD = 25 EDITOR - Load a documant

@@CHSV = 26 EDITOR - Save a document

ET10/10 Couyriaght (C) 1984 Intelligent Software Limited

Uy

1J

29-Nov=-84 EXOS 2.0 - Kernel Specification Page 54

All other sub-function codes from =zrro ‘o 63 are

reserved for use by IS/Enterpris~. Cocrn of 44 and above 77

can be used by user devices.

11.14 Function 16 - Read, Write or Toggle EXOS Variable

Parameters: B 0 To read value
1l To write value
2 To toggle value

EXOS variable number (0...255)

Status
New value of EXOS variable

Results:

[[IO 1

o»on

This function allows EXOS variables to be set or
inspected. These variables control various functions of
the system and specific devices. Note that the value is
returned in D even for write and toggle. A 1list of
currently defined EXOS variables was given earlier.

System extensions can implement additional EXOS variables.

11.15 Function 17 - Capture channel

Parameters: A = Main channel number
C - Secondary channel number (0FFh to
cancel capture)
Results: A = Status

The capture channel function causes subsequent read
function calls (read character, read block and read status)
to the main channel, to read. data instead from the
secondary channel. When the function call is made, the
main channel must exist but no check is made on the

secondary channel number existing.

The capture applies to all subsequent input from the
main channel number until either the secondary channel is
closed or gives any error (such as end of file) or the main
channel is captured from somewhere else. The effect of the
capture can be cancelled by giving a secondary channel

number of OFFh which is not a valid channel number.

New value to be written (only for writ

o

("'\

£ [il 1 —3 r—y ~—9 r—1 T— % = -

| il |

| .

| -1

— |

29-Nov-84 EXOS 2.0 - Kernel Specification Page 55

11.16 PFunction 18 - le-direct channel

Parameters: A - Main channel number
C - Secondary channel number (0FFh to
cancel redirection)
Results: A - Status

The re-direct function causes subsequent output sent to
the main channel with write character or write block
function calls, to be sent to the secondary channel
instead. The redirection lasts until the secondary channel
is closed or returns an error, or the main channel is
redirected somewhere else. A secondary channel number of
OFFh will cancel any redirection of the main channel.

11.17 Function 19 - Set default device name

Parameters: DE - device name pointer (no colon)
C - device type 0 = non file handling
1l = file handling
Results: A - status .

The set default device name function specifies a device
name and (optionally) a unit number which will be used in
subsequent "open channel" or ‘"create channel" function
calls if no device name is specified by the user.
Initially the default name will be "TAPE-1" but will be set
to "DISK-1l" if a disk device is linked in. The specified
device name and unit number are checked for legality (ie.
no invalid characters) but not for existence in the device
chain.

If a string with only a unit number, such as "45" |is
specified then this will set a new unit number but the
default name will be un-changed. If device name but no
unit number is given, then the default unit number will be
set to zero.

The "device type" given in register C is simply copied
. to the "device type" EXOS variable. This will be zero in
. the default machine because the default device is "TAPE"
which 1is not a file handling device. ~If a disk unit is
connected then the device type will be set to 1. This
variable is not currently used by EX0S but can be of scme

use to applications programs.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

¥

29=Nov-84 EXOS 2.0 - Kernel Specification Page 56

11.18 Function 20 - Return system status

Parameters: DE -> Parameter block, B8 bytes.
Results: A Status code, always 0.
B Version number (currently 20h)
= DE unchanged

This function returns the version number of the system
and various parameters which describe the RAM segment
usage in the system. The parameters returned are, in
order:

0. Shared segment number (0 if no shared segment)

1. Number of free segments.

2. Number of segments allocated to user, excluding page-
zero segment and shared segment (if there is one).

3. Number of segments allocated to devices.

4., Number of segments allocated to the system, including
the shared segment (if there is one).

5. Total number of working RAM segments.

6. Total number of non-working RAM segments.

T *** Not currently used ***

11.19 Function 21 - Link Device

Parameters: DE - Pointer to RAM in 2-80 space
containing device descriptor.
BC - Amount of device RAM required.
Results: A - status

The 1link device function causes the device descriptor
pointed to by DE to be linked into the descriptor chain,
The descriptor will be put at the start of the chain and
any existing device with the same name will be disabled.
DE must point at the TYPE field of the descriptor and the
descriptor must not cross a segment boundary. Once linked
in the user must ensure that the device code and descriptor
are not corrupted until a RESET function call with bit-5
set (to un-link user devices) has been made.

The amount of RAM requested will be allocated in the
system segment. When the device is first initialised, this
RAM area will be pointed to by IX and the device must
remember this address since it will never be told it again,
even when it is re-initialised,

ET10/10 Copyriaght (C) 1984 Intellicent Software Limitad

3 3 Ty v

1

-—

-y - 5

i, |

el |

1 r ¥ 1 v

L. a

heada b

| —

Cod’ ineed k.. b A b

L——d

29-Nov~-84 EX0S5 2.0 - Kernel Specification Page 57

— I iy
11.20 Function 22 - Read EXOS Boundary ¢?§fﬁi = &Sy
Parameters: none
Results: A - status (Always zearo)
C - Shared segment numbcr., O if there

is no shared segment.
DE - EX0S boundary in shared segment
(0..3FFFh) '

The read EXOS boundary function returns the offset
within the currently shared segment, of the lowest byte
which the system is using. If there is no shared segment
then DE will point to where the EX0S boundary would be if a
shared segment were allocated.

11.21 Function 23 - Set User Boundary

Parameters: DE - Offset of new USER boundary.
(0...3FFFh)
Results: A - Status

The set user boundary function allows the user to move
the USER boundary within the currently shared segment. If
there is no shared segment then this function 1is not

allowed. The boundary may not be set higher than the
current EXOS boundary.

11.22 Function 24 - Allocate Segment

Parameters: none
Results: A - status
C - Segment number

DE - EXOS boundary within segment

The allocate segment function allows the user to obtain
another 16K segment for his use. If a frze segment is
available then it will be allocated and status returned
zero with segment number in C and DE will be 4000h.

If there are no free segments but the user can be
allocated a shared segment, then the segment number will be
returned in C and DE will be the initial EX0S boundary. In
this case a .SHARE error will be returned. The user
boundary is initially set equal to the EXOS boundary.

If there are no free segments and there is already a
shared segment then a .NOSEG error will be returned.

If this function call is made by a device driver then
the segment will be marked as allocated to a device and a
shared segment cannot be allocated.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Kernel Specification Page 58

11.23 Function 25 = Free segment

Parameters: C - Segment number
Results: A - status

The free segment function allows the user to free a 16k
segment of RAM. The segment must be currently allocated to
the user or be shared. The page zero segment cannot be
freed as it was never allocated explicitly with an
"allocate segment" call.

If this function call is made by a device driver then it
must be to free a segment which was allocated to a device
driver with an "allocate segment"™ call. There 1is no
checking of which device is freeing the segment - devices
are supposed to be well behaved.

11.24 Function 26 - Scan System Extensions

Parameters: DE
Results: A

= Pointer to command string
= Status

This function causes the string to be passed around all
system extensions after some processing, with action code 2
(for 3 if the first word of the string is ' "HELP"). This
allows services to be carried out by system extensions and
also allows transfer to a new applications program.

11.25 Function 27 - Allocate Channel Buffer

Parameters: DE - Amount of buffer which must be in
one segment
BC - Amount of buffer which needn't be
in one segment (only needed for
video devices)

Results: A - status
IX -> Points newly allocated buffer
PAGE-1 contains the new buffer segment

The allocate channel buffer function is provided only
for devices and may not be called by the applications
program. It is used to provide a channel with a RAM buffer
when it 1is opened. The "multi segment size" passed in
register BC is ignored for non-video devices since they
must have their channel buffer all in one segment. So,for
non-video devices BC need not be loaded before making the
call.

ET10/10 Coovriacht (€)Y 19R4 Tntellioent Snftware TLimited

I

-

Ef

[
/l

| P | WY

| —

| S—

hod [—

-/

29-Nov-84 EX0S 2.0 - Kernel Specification Page 59

11.26 Function 28 - Explain Error Code

Parameters: A .- Error code which needs explaining
DE - Pointer to string buffer (64 bytes)
Results: - A=0

DE - Unchangad

This function allows an EXOS arror code to be converted
into a short text message. System axtensions are given a
chance of doing the translation. All error codes genacated
by the EXOS kernel and the built in davices are explained
by tha internal ROM. 1f the string returned is of z2ro

length then it is an error code which no one was willing to
explain.

11.27 Function 29 - Load Module

Parametel s D& -> Buffer for module hsadzar (16 bytes)
B = Channel number to load from
Results: A - Status i
DE = Unchanged
B - If A=.ASCII - lst character of file

If A=.ITYPE - Module type
Else un-defined

This function call was explained in the section on
loading Enterprise module format files. It will load a
module header and then either load the module itself, or
pass it to the system extensions for loading. If the
system extensions don't want it then it will be returned to
the user in his buffer (pointed to by DE), for him to load.

If a module is loaded OK by EXOS or a system extension
then a zero status code is returnad. In this case, or if
the module is successfully loaded by the user, ths "load
module® function call should be repeated to load ths next
module. This should continue wuntil a .NOMOD error 1is
returned which indicates that an "end if file header" was
read, or until a fatal error occurs.

If the first byte is not zero, or the type byte is zero
then the file is not an Enterprise format file and a .ASCII
error is returned with the first character in B. The user
can then do what he wants with the ASCII data, but should
not attempt to load another module from this file.

ET10/10 Copyright (C) 1984 Intelligent Software Limited

G~

29-Nov-64 EXOS 2.0 - Kernel Specification Page 60

11.28 Function 30 - Load Relocatable Module

Parameters: B = Channel number to load from
DE = Starting address to load at
Results: A = Status
B DE = Unchanged

This function <call can be used by the wuser to load
user relocatable modules, with header type 2, which will be
rejected by the "load module™ call above.

The user must find the correct sized chunk of RAM to
load the module into (from the size in the header). If the
function call returns a zero error code then the |user
should call the initialisation entry point of the code
loaded (if there is one) and should then call "load module"
acain to get the next module header. This is explained in
more detail in an earlier chapter.

11.29 Function 31 - Set Time

Parameters: Hours 0...23 (BCD)
Minutes 0...59 (BCD)
Seconds 0...59 (BCD)

Status

»PmUO0
o

Results:

This function sets the internal system clock. The
parameters are checked for legality and a .ITIME error
returned if they are illegal.

11.30 Function 32 - Read Time

Parameters: none

Results A = Status
C = Hours 0...23 (BCD)
D = Minutes 0...59 (BCD)
E = Seconds 0...59 (BCD)

This function reads the current value of the system
clock. This clock is incremented every second, using the
Enterprise's 1Hz interrupt. When it reaches midnight the
date will automatically be incremented (see below).

ri1Nn/1n ' Pomrredimbhi /AN TA08 Tabal19ceacbk Pefioee.- S e

-

-

- |

s, | — - | -

| i, |

[1 | . s [P—
L

h._a [N | W

[S

k..

bew ba b

L-d

29-Nov-84 EXOS 2.0 - Kernel Specification Page 61

11.31 Punction 33 - Set Date

Parameters: C = Year 0...99 (BCD)
D = Month l...12 (BCD)
E = Day l...31 (BCD)
Results: A = Status

This function sets the internal system date. The
parameters are checked fully for legality, including the
number of days in each month and leap years. The year is
origined at 1980 so a year value of 4 actually represents
1984. This allows the date to go well into the future
(obsolescence built out !).

11.32 PFunction 34 - Read Date

Parameters: none

Results: A = Status
C = Year 0...99 (BCD)
D = Month l...12 (BCD)
E = Day 1...31 (BCD)

This function reads the current value of the internal
system calender. This can be set by the user and will
increment automatically when thz system clock reachas
midnight, coping correctly with the number of days in =ach
month including leap years.

++++++++++ END OF DOCUMENT ++++++++++

ET10/10 Copyright (C) 1984 Intelligent Software Limited

0.

‘f"

[Y

— | L.w ? — . R | —

| W—

ne me me e me

e e e w

EXOS Punction Codes and Error Codes "

.ill‘-l.Ill.."I"'.""llt'lll.‘ll‘.ll...I'i'l‘t..llllit‘l"i.‘.ltl‘l*lltl‘llt“tﬂ

This file defines EXOS variables, function codes, error codes and software
interrupt codes as externals. It should be assembled to a .REL file and
then linked with any code which uses EX0S. It produces no object code, just
defines symbols.

err_code defl 100h -
err MACRO name
err_code defl err_code - 1
PUBLIC name
name equ err_code
ENDM
var MACRQO name,number
name egu number
PUBLIC name
ENDM
; EXOS FIXED VAR IABLES
H SIS IIIAIIIIIISTTTITIE
var USR_P3, 0BFFFh ;Four segments which were in 2Z-80 space
var USR_P2, QBFFEh ; when EXO0S was last called.
var USR_P1, 0BFFDh
var USR_PO, 0BFFCh
var STACK_LIMIT, 0BFFAh ;Bottom limit of stack for devices.
var RST_ADDR , 0BFF8h ;Warm reset address
var ST_POINTER, 0BFF6h ;Address of status line RAM
var LP_POINTER, 0BFF4h ;Address of start of video LPT.
i
var PORTBS, 0BFF3h ;Current contents of Z-80 port 0B85h.
var FLAG_SOFT_IRQ, O0BFF2h ;Flag <>0 to cause software interrupt.

var

FUNCTION CODES

NEEESTINTENESIITIE

BRESET,
BOPEN,

BCREAT,
BCLOSE,
@DEST,

ERDCH,

PRDBLK,
8WRCH,

@WRBLK,
BRSTAT,
RSSTAT, 10
BSFUNC, 11
BEVAR, 16
acaPT, 17
@REDIR, 18
epDEV, 19
esyss, 20
BLINK, 21
BREADB, 22
@SETB, 23
AALLOC, 24
4aFREE, 25
AROMS, 26
ApUFF, 27
BFRRMSG, 28

D@~ N &N O

Reset system

Open channel

Create channel

Close channel
Destroy channel

Read character

Read block

Write character
Write block

Read status

Set channel status
Special vartion
Set/read/toagle EXOS wvariable
Capture channel
Ro=direct channnl

St defanult devier
Fotarn iystem status
Link device

Read FXOS boundary
Set USER boandary
Allnrate =snneors

Frovs “mapen*

Locatr RUMS

Allocatr channel h:ffnar
Return orror mrssane,

—~

-—9%

s, e, G oo [P ity |

Y 3

i |

h.

"""‘

L, |

Y22t i s s e s s e R R R R R R R R R R R R RN AR R R RN RERRRRRERDRER]

ERROR CODES

-

| -

[

| -

b Lhed L9 oo b ey b

Yonal

| —

- ar wa ®a ma e e ms w2 wa

-

General

err
err
err
err

err

err
err
err
err
2T
err

err
err
err
err
err

General

arr
arr
err
err
err

publie

errors returned by the EXOS kernel

« IFUNC
«ILLFN
« INAME
.STACK

« ICHAN

+NODEV
. CHANX
.NOBUP
. BADAL
« NOR AM
+.NOVID

. NOSEG
. ISEG
.IBOUN
JIVER
. IDESC

errors

+ISPEC
« 2NDCH
- NOFN

.ESC

. STOP

+SWIL

;0FFh
;0FEh
;0FDh
;0FCh

;0FBh

;0FAh
;0F9h
;0F8h
;0F7h
;0F6h
;0FS5h

;0F4h
;0P3h
;0P2h
;0Flh
;0F0h

returned

j0EPh
;0EEh
;0EDh
;0ECh
;10EBh

File related errors

err
err
err
err
err
err
err

.NOFIL
LEXFIL
.FOPEN
.EQF
.FSIZE
.FPTR
+PROT

;10EAR
;0E9n
;0EBh
;0E7h
;0E6h
;0ESh
;0E4h

Invalid funttion code

EX0S function call not allowed
Invalid name string
Insufficient stack

Invalid channel number (0FFh) or channel
does not exist.

Device does not exist (OPEN/CREATE)

Channel already exists (OPEN/CREATE)

No ALLOCATE BUFFER call made (OPEN/CREATE)

Bad ALLOCATE BUFFER params. (OPEN/CREATE)

Insufficient RAM for buffer.

Insufficient video RAM.

No free segments (ALLOCATE SEG)

Invalid segment (FREE SEG, SET BOUNDARY)
Inval;d user boundary (SET USER BOUND)
Invalid EXOS5 variable number

Invalid device descriptor type (LINK DEV)

by various devicas

Invalid special function code
Attempt to open second channel
Punction not supported

Invalid escape character

Stop key pressed

File does not exist

File exists (CREATE)

File already open

End of file met in read
File is too big

Invalid file pointer value.
Protection violation

Keyboard errors

LAFKEY ;0E3h

err
arr LKFSPC :0E2h

Sgund ATTrOrS

ort .S5ENV ;0ELlh
aTT .SENBF ;OEDh
TT .SENLO ;0DFh
arr .SQFUL ;0DFEh

Video orrors

arr .VROW ;0D0h
err LVCURS ;0DCh
err .VCOLR ;0DBh
err .VSIZE ;0DAh
err .VMODE ;0D%h
err .VDISP ;0DBh
err .VD5P2 ;0D7h
err .VBEAM ;0D6h
err .VLSTY ;0D5h
err .VLMOD ;0D4h
ert JVCHAR ;0D3h

Serial errors

err . BAUD ;:0D2h

Editor errors

err LEVID :0D1lh
err .EKEY :0D0h
err .ECURS ;0CFh

Cassptte errors

err .CCRC ;0CEh

Invalid function ¥ey o3y
Run out of function key space

Envelope is too big or number 235.

Not enough room to dafine envelore

Envelope Storage requested too small (ie. <2)
Sound queur i5 full f(and WAIT_SND <> 0)

Invalid row number to scroll
Attempt to move cursor off page
invalid colour passed to INK or PAPER

Invalid X or Y size to OPEN
Invalid video mode to OPEN

Naff parameter to DISPLAY

Not enough rows in page to DISPLAY

Attept to move beam off page

Line style too big

Line mode too big

Can't display character on graphics page

Invalid baud rate

Invalid video page for OPEN.
Trouble in communicating with keyboard.
Invalid co-ordinates for positioning cursor.

CRC error from cassette driver

f\

-

-

Ty TN Ty =y ey e

LR |

3y Fy Fry 3y vy ey 13

L |

[)

| B

| S

| S}

Lo-a

b Lo

v

e b0 e

L]

[S—

-

Network arrors

err .SEROP
err . NOADR
rinte macro e
.printx
endm
IFPl
printe
ENDIF

;0CDH Serial device open = cannot use network
;0CCH ADDR _NET not set up

* Smallest error code is e *

terr_code

WARNING CODES

var .SHMRE,

07Fh iShared segment allocated

?!

Ll A AL AR A R AR R A ARl R Al R R Y e S S R R R I ™™

EXOS VARIABLE NUMBERS

-

— ey

-—

~— 14 ey e

-~y

—

~—

var STTRQ_ENABLB. 0 ; Interrupt enable bits.
var SFLAG_SIRQ, 1 i Flag to cause a software interrupt.
var SCODE_SIRQ, 2 ; Software Interrupt code.
var SDEF_TYPE, 3 ; Type of default device,
var SDEF_CHAN, 4 ; Default channel number
+ =% wvar SLOCK_KEY, 5 ; Keyboard lock status,
. simis var SCLICK_XEY, 6 ; Key click enable/disable.
var SSTOP_IRQ, 7 : Software interrupt on STOP key.
var SKEY_IRQ, 8 ; Software interrupt on any key press.
. 20a% var SRATE_KEY, 9 : Reyboard auto-repeat rate.
*/ war SDELAY_KEY, 10 i Delay before auto-repeat starts.
42*7 var STAPE_SND, 11 ; Tape sound enable/disable.
var SWAIT_SND, 12 ; Sound driver waiting if buffer full
var SMUTE_SND, 13 ; Sound mute enable/disable.
var SBUF_SND, 14 ; Sound envelope storage size.
var SBAUD_SER, 15 ; Serial baud rate.
var SFORM_SER, 16 ; Serial word format.
var SADDR _NET 17 ; Network address of this machine
var SNET_IRQ, 18 ; Software interrupt on network,
var SCHAN_NET, 19 ; Channel of network interrupt
var SMODE_VID, 20 : Video mode.
var SCOLR_VID, 21 : Video colour mode,
var SX_sIz_viD, 22 ; Video X page size.
var S$Y_SIZ_VID, 23 i Video Y page size,
-7z var SST_FLAG, .24 : Status line displayed flag.
LRl yrar SBORD_VID, 25 ; Border colour.
var SBIAS_VID, 26 ; Fixed bias colour.
“eIA wvar $VID_EDIT, 27 ; Video channel number.
st var SKEY_EDIT, 28 i Keyboard channel number.
var SBUF_EDIT, 29 i Size of edit buffer.
var SFLG_EDIT, 30 i Editor control flags
var SSP_TAPE, 3l ; Cassette I/0 speed.
_ var SPROTECT, 32 ; Cassette protection control
“EITT yar SREM1, 33 i Cassette remote 1
SE U var SREM2Z, 34 ; Cassette remote 2

Fe 11 "\ -y * 3 r-3

| S—

| —

|

h-w

Lo LJd 4 tww J €Jd ¢CJd L Lo L s o

e

C

.II...‘I’...l.....lll.l’l...tlt!Itlﬁiﬁi..t.i.lllII'i'l‘l‘lll’..‘l’l‘.l!llil'l’lﬂll'l'l‘l‘-‘

T e

var
var
var

var

SOFTWARE INTERKRUPT CODES

EaIESSE=IITIISAFISSI=SSII=IE

?FKEY,
?STOP,
?KEY,

?NET,

10h
20h
2lh

30h

jFunction keys 1l0h...lFh
iStop key
;'any key' 2lh

;Network data received.

s
C

AT S SN T S [y W R VNG R Gy S
=

C

boed lead Ll

Led bd

-

22-1-85 PAGE 1

ENTERPRISE PIN OUT INFORMATION
AhkkkhRkrhkh kR ARk Rk kN hk

Enterprise pin outs as follows:-
All looking into connector on Enterprise - Pin Bl top left
Pin Al bottom left

Edge fingers are on 2.54mm pitch, some positions are not used but
still counted.

Control 1l/Control 2

Al - Keyboard J (Common)
A2 - Keyboard L

A4 - KB4(9) (Right)

AS - KB2(7) (Down)

A6 - KBO(5) (Fire)

BlL - OV

B4 - +5V &

BS - KB3(8) (Left))
B6 - KBl(6) (Up)

Numbers in brackets are control 2. All signals are TTL levels -
read as part of keyboard matrix. Use multi-core screened cable.-

Serial/Network
Al - Reference
A3 = RTS

A4 - CTS

Bl - OV

B3 - Data Out

B4 - Data In

Use 6 core screened cable

Signal levels relative to
OV line 0 = OV

1 = +12V
Relative to ref. line

0 = =5V

1l = +7V

For networking connect''RTS' to 'CTS' tc form 'control bus', and
rdata in' to 'data out' to form 'data bus'. Referance 1s an
offset 'ground', this may not be possible with certain eguipment
confirgurations.

121
FOP YR TGHT (C) 1985 ENTERPRISE COMPUTERS LTD.

22-1-85

Printer
Al OV
A2 /strobe
A3 Data 3
A5 Data 2
A6 Data 1
A7 Data 0
Bl OV
B2 /ready
B3 Data 4
5 Data 5
B6 Data 6
B7 Data 7

Use 12 way flexible ribbon cable.

All signals at TTL levels.

Monitor

Al Green signal

A2 OV

A3 Monochrome composite video
A4 /HSYNC

A5 /VSYNC

A7 Left audio

B2 OV

B3 Blue signal

B4 Red signal

B5 /CSYNC

B6 Mode switch (Peritel)
37 Right audio

Use multi core screened cable.

PAGE 2

All syncs are TTL levels R,G and

B levels are 0 to 4 volts linear (not TTL).

A\

A

T3 rr3 ra o

A

™~

T 3 1 r1 M

1

3 Y Y oy}

—

r

L .4 h .4 [g1 L - .. -

-—A

| —1

-4 L4

a

L

29-Nov

1. 1IN
o’

-84 EX0S 2.0 - Cassette Driver Page 1

TRODUCTION

The cassette driver allows storage of data files on
cassette tape. Two cassette recorders can be handled, with
separate remote control of the motors on each, allowing
reading from one and writing to the other. The files
stored can contain any data, not just ASCII.

The files are stored on tape in "chunks™ with each chunk
being wup to 4k bytes. Data is always written to or read
from the tape in complete chunks, with the motor being
stopped between chunks. However these chunks are buffered
within the cassette driver so the user can read or write in
any sized blocks or single characters.

Two data rates are provided for recording, these are
approximately 1000 and 2400 baud. When a file is read in
the speed is determined from the leader automatically.

The cassette driver makes use of the status 1line for
displaying messages when it is loading and saving, and also
to display the cassette loading meter. This loading meter
can be used to set the level optimally when reading tapes.

-/ 2. CASSETTE FILE FORMAT

2.1

ET14/5

The details of how data is stored on cassette will be
covered later. This section just describes the general
format of a file on tape as it appears to the user.

A file consists of a "header chunk"™, followed by one or
more "data chunks®. Each chunk will be preceded by
necessary information for syncronising the tape reading
routine and establishing the speed, including a long leader
tone. Details of this are given later,

The Header Chunk

The header chunk does not contain any data from the
file. It contains the filename (which may be null), and a
protection flag which can be used to prevent simple tape to
tape copying (see later). The header chunk is wused to
identify the file.

Copyright (C) 1984 Intelligent Software Limited

123

29-Nov-84 EXOS 2.0 - Cassette Driver Page 2

2,2

Data Chunks

Each data chunk contains exactly 4k of data from the
file, except for the last one which may have any amount
from zero bytes up to 4Kk. This smaller chunk is used to
mark the end of the file. The data within each chunk is
split wup into 256 byte blocks, with a CRC check done on
each block. This ensures that a bad chunk will be rejected
fairly gquickly.

3. USING THE CASSETTE DRIVER

The cassette driver allows a maximum of two channels to
be open to it at a time, one for reading and one for
writing. A channel which is opened for reading cannot be
written to and vice versa. A reading channel is opened by
making an "open channel"™ call and a writing channel by
making a "create channel®™ call. The cassette driver is
thus the only built in device driver which distinguishes
between these two EXOS calls.

Opening Channels for Reading

A channel can be opened for reading a file from tape by
simply doing an "open channel" EXOS call with device name
"TAPE:". Any unit number is ignored, the filename is
optional. The cassette channel will reguire a channel RAM
buffer of 4k (enough for one data chunk) and an error
(.NORAM) will be returned if there is insufficient RAM. An
error will also be returned if a cassette read channel is
already open (.2NDCH), or if there is a protection
violation (.PROT - see below).

Assuming that all this was OK, the cassette driver will
start the cassette motor (see section on remotes below),
and start searching for a suitable header chunk. At this
stage it will display the message "SEARCHING" on the status
line.

When a header chunk is found, the name of this file from
the header 1is examined. If it is not the same as the
filename specified by the user, and if the user's filename
was not null, then this is the wrong file. In this case
the message "FOUND <filename>" will be displayed on the
status line ard the search for a suitable header chunk will
continue.

—— e e - * s rmy mam s - - = . - - - . -

(’\

al

r-

1

T ry -

1

r

[S Y

| Sy | 1 | —) b _a

L-4 L.s

| G |

L4

(4 L1 L3 L3 L Loa

29-Nov-84 EXOS 2.0 - Cassette Driver Page 3

If the filename is correct, or if the user's filename
was null which means "load the first file found", then the
message “LOADING <filename>" will be displayed on the
status line and the "open channel® routine will return with
a zero status code to indicate success, after stopping the
cassette motor. Read character or read block function
calls can now be made to read the data.

At any point in this process, the STOP key can be
pressed which will abort the searching and return
immediately to the user. An internal flag will be set so
that any attempt to read characters will result in an .EOF
error. The user must close the channel.

The "LOADING" message is left on the status line wuntil
the channel is closed. It may of course be overwritten by
the user.

Reading Data

Data can be read from a cassette read channel by simply
making any combination of EXOS read character and read
block function calls. Data from the tape is buffered in
the 4k channel RAM area. When the channel is first opened
this buffer will be marked as empty.

If there 1is data in the buffer when a read character
call is made then the next byte will just be returned to
the user immediately, and the buffer pointers adjusted.

If there is no data in the buffer when a read character
call is made then another data chunk must be read from the
tape. The tape motor will be started and the cassette
driver will look for a chunk. When a chunk is found, if it
is a header chunk then a .CCRC error is returned to the
user and the end of file flag will be set so that no more
bytes can be read. If a data chunk is found then the data
from it will be read into the buffer with CRC checking.

Having read the chunk in successfully, the £first
character will be returned to the user. If this was the
last chunk in the file then a flag is set which will
prevent another chunk from being loaded. When this £final
chunk has all been read by the user, any further read
character calls will result in .EOF errors being returned.

If a CRC error occurred in one of the 256 byte blocks in
the chunk, then any previous blocks will be buffered as
usual and can be read by the user. When all the wvalid
blocks have been read, the next read character call will
return a .CCRC error, and subsequent ones will return .EOF
errors. No more data can be read from this channel.

ET14/5 Copyright (C) 1984 Intelligent Software Limited

2Y-Nov-84 EXOS 2.0 - Cassette Driver Page 4

The STOP key is tested all the time while data is being
read from the tape. If it is pressed then it will cause an
immediate return to the user. The end of file flag will be
set so that any further read character calls will result in
.EOF errors-being returned. No data from the interrupted
chunk, or any later chunks, can be read.

Creating Channels for Writing

A "create channel" EXOS call will be accepted as long as
there is 4k of channel RAM available for the data buffer, a
cassette write channel is not already open and there is no
protection violation (see below). This is the same as for
a reading channel.

Assuming that this is OK, the cassette driver will start
the cassette motor and wait for a second or so for the tape
speed to stabilise. The message "SAVING <filename>" will
be displayed on the status line. After the delay the
cassette driver will write out a header chunk for this new
file, which will contain the filename, and then stop the
motor. After this it will return to the user with a zero
status code to indicate that the create was successful.

The STOP key is tested during the writing of the header
chunk and if it is pressed then the write will stop
immediately and the channel will be marked as invalid so no
data can be written to it. The channel will still be open
and so must be closed by the user.

The T"SAVING" message on the status line is left there
until the channel 1is closed, although it may be
overwritten by the user of course.

Writing Data

Data can be written to a cassette write channel by any
combination of write character and write block calls. A
write block call is treated exactly as if each character in
the block was written individually. Data is written into a
4k buffer in channel RAM and is only written out to the
tape when the buffer becomes full, or the channel is
closed.

When a character is written, if is just added to the
buffer and the buffer pointers adjusted. .If there is still
more room in the buffer then the cassette driver will
return to the user immediately. If the buffer is now full
then it will be written to tape as a data chunk.

D

—

oy

-

i . S

N ry rm " r oy ey oee

[

h_ a

29-Nov-84 EXOS 2.0 - Cassette Driver Page 5

| ——1

The process of writing the data chunk is very similar to
writing out the header chunk when the file was created.
-/ The motor is started and then there is a delay to allow it
to come up to spe2d. The data chunk itself is then written
out and th2 motor stopped. .This process is interruptable
with the STOP key.

[

L

| N—
w
.
wn

Closing Channels

The cassctte driver treats the "close channel" and
"destroy channel" EXOS calls idantically. When a write
channael is closed than th2 final data chunk must be written
g out. This is don2 avan if tharz: are no bytes in the

buffer, to mark th: ond of the file. If the STOP key was

\ pressed while data was being writtan then tha channel will

" have been marked as dead, and in this case the final block
will not be written out.

-

L.

For any cassette channel the status line will be blanked
to remove the "LOADING" or "SAVING" message from the status
line.

“) 4., MISCELLANEQUS CASSETTE FEATIRES
4.1 The STOP Key

The STOP key is tested whenever the cassette driver is
actually accessing the tape, either for reading or for
writing. Since the cassette driver disables normal EXOS

] interrupts while it is accessing the tape, it does not rely
' on the normal keyboard driver detection of the STOP key.

) Instead it tests for the stop key directly itself and.
simulates the keyboard's action. However it does not test
the STOP_IRQ EXOS variable, so the STOP key will always

! halt cassette operations even if STOP_IRQ is non-zero.

When the STOP key is detected, a .STOP error will be
returned to the user, and also a software interrupt will be
caused with software interrupt code ?STOP. The channel
which was being used will be markad as no longer valid so
that the cassette driver will reject further read or write
character calls.

Loa

L3 L4

(o
C

-4

. ET14/5 Copyright (C) 1984 Intelligent Software Limited !‘2?

29-Nov-84 EXOS 2.0 - Cassette Driver Page 6

4.2 Tape Output Speed and Level

The data rate for tapes being read is determined
automatically from the leader signal, and the level has to
be set by the user. However th2 sp2ed and level for
writing out of data are controlled by EXOS variables which
must be set before opening the channel, unless the defaults
are required

LV_TAPE determines the approximate peak to peak outout
level of the cassette driver as follows:

Dor 1 => 20 mV

2 = 40 mv (default)
3 => 80 mV
4 => 170 mV
5 => 350 mV

6...255 => 700 mV

SP_TAPE selects between two tape output speeds, a fast
speed and a slow speed as follows: (The baud rates are
approximate because the actual rate depends on the data
cince a one and a zero bit take different amounts of time.)

SP_TAPE=0 => Fast speed (approx. 2400 baud - default)
SP_TAPE<>0 => Slow spead (approx. 1000 baud)

4.3 Cassette Loading Level Meter

The cassette loading level meter is displayed whenever
the cassette driver is searching for or reading a chunk
from the tape. It derived directly from a hardware level
detection circuit, separate from the cassette input
circuit, and is displayed on the status line as either a
red or a green block next to each other.

If the input level is increased it will become red and
if the level is reduced it will become green. The optimum
level is when it is just on the verge of changing be tween
red and green, and it may in fact flash between the two as
data comes in. Although this is the optimum level, the
cassette input is not very sensitive to levels and a wide
margin around this optimum level is acceptable.

The level meter is removed from the status line when a
chunk has been read, to indicate that the tape is no longer
be ing accessed.

The changing of the level meter is done by changing
palette colours 2 and 3 of the status line. When the level
meter is removed, these colours are restored to their
original wvalues. However in the meantime, if there is
anything else on the status line it may change colour.

—

Lo |

-y

—1

r—

L_a

| W L._-a

L.a

.4 L_.

B

| G

h_a

L3

|]

Ld -4 b4

L.

/

L4 3 b

29-Nov-84 EXOS 2.0 - Cassette Driver Page 7

4.4

405

Remote Control Relays

The Enterprise is equipped with two remote control
relays which enable it to control two tape recorders
separately. The motor is started when the cassette driver
wants to read or write a chunk and stopped as soon as this
has been completed, or the STOP key pressed.

If only one cassette channel is open, then both relays
will be activated so either socket can be used. This
ensures that reading and writing can be done without moving
the remote plug. If both a read channel and a write
channel are open, then.the read channel will use ths remote
next to the CASSETTE IN socket (remote 1) and the write
channel will usSe the one next to the CASSETTE OUT socket
(remote 2).

The remote relays can also be controlled by two EXOS
variables (called REM1 and . REM2), separately from the
cassette driver. When one of these is changed then the
appropriate relay will be set on or off as appropriate.
The cassette driver always updates these variables whan it
uses the remotes so the variables always represent the
current state of the relays. Like all other on/off EXO0S
variables, zero corresponds to "on" (motor going) and OFFh
corresponds to "off" (motor stopped).

The remote relays will always be set off when a reset
1/0 system occurs (see EXOS kernel specification). This
occurs at a warm reset and when a new applications program
takes control.

Use Without Remote Control

Cassette recorders without remote control can be used,
provided the PAUSE button on the recorder is used at the
correct times. For simply loading and saving programs, no
pausing is necessary, assuming that the program doing the
loading and saving is fast enough (IS-BASIC is). &

For saving, pausing is only necessary to avoid long gaps
between chunks, it is not essential. For loading, pausing
is necessary to ensure that the data chunks are not missed
while the machine is processing the data.

To help with this, when the cassette driver has finished
reading a data chunk, and there are more data chunks to
follow, it displays a "PAUSE" message on the status line
in place of the level meter. This message will remain
until the next chunk 1is required, when 1t will be
overwritten with the level meter again.

ET14/5 Copyright (C) 1984 Intelligent Software Limited

126

29-Nov-84 EXOS 2.0 - Cassette Driver Page 8

4.6

Cassette Sound Feedthrough

The EXOS variable TAPE_SND is wused to control
feedthrough of the tape input signal to the main sound
output. If it is OFFh then there is no feedthrough. If it
is zero then the tape input signal will be fed to the hi-fi
sound output and the internal speaker (if MUTE_SND is
zero), but not to the headphone/cassette output (to avoid

feedback problems). The default setting is on (zero).

Copying Protection

since two cassette channels are supported, one for
reading and one for writing, it is very easy to open
appropriate channels and copy any file at all, regardless
of its content, onto another tape. This can be done fairly
sasily with a BASIC "COPY" command. The cassette driver
contains a facility for protecting a file against this very
simple type of copying.

A

When a file is created, and the header written out, the
current value of the EXOS variable PROTECT is copied into
the header. If this is zero (the default) then the file is
not protected. IF it is non-zero then the file is marked
as a protected file.

When a read channel is opened, and the header is read
in, the "protect™" flag from the header is examined. If it
is zero then no special action is taken. 1If it is non-zero
then the cassette driver will not permit a write channel to
bz open at the same time as this read channel. Thus if a
write channel is already open then this "open channel® call
will be rejected witn a .PROT error. If this "open
channel" is accepted then further "create channel" calls
will be rejected with the same error.

5. HARDWARE

The hardware will not be explained in any detail but the
various ports and bit assignments are covered here.

N Y

r=

s Y e

]

— ~

e |

.

[

| A4

k.a

L. L. a

L.a

La L4 ..

-4

5.

[G

L-4

29-Nov

-84 EXOS 2.0 - Cassette Driver Page 9

The cassette data input, level detection input, remote
control outputs and sound feed-through control are all
available as bits on I1/0 ports as follows:

data input port 0B6h bit 7
level input port 0Bé6h bit 6
remote 1 output port 0BSh bit 6
remote 2 output port 0B5Sh bit 7
feedthrough toggle port 0B5h bit 5

The cassette output is in fact the same as the sound
output, with the cassette out socket doubling as a
headphone socket. The cassette output is therefore done by
using the DAVE chip in D/A mode and so several of the DAVE
chip registers are used. These will not be detailed here
as they are defined in the DAVE chip specification.

6. CASSETTE DATA FORMAT ,

ET14/5

As mentioned before a file consists of a series of
chunks, the first of which is a header chunk and the rest
of which are data chunks. The section describes the format
of a chunk in some detail. A header chunk is in fact a
special case of a data chunk with a special block count as
will be explained later.

Cassette Signals

Each byte is stored on tape as a series of 8 bits, high
bit first, with no start or stop bits. Each bit is stored
as a single cycle, with a different frequency to indicate
whether the bit is set or clear. These freguencies are in
a ratio of 2:3 which is large enough to allow the software
to distinguish them when reading in, but small enough to
keep the data rate high.

_An intermediate frequency is used for the leader tone
which comes before the data, and this leader is wused to
datermine the data rate when reading.

A single cvcle of lower frequency is used to indicate
the starc of the data and also establish the phase cf the
signal (since it may or may not be inverted).

When the data is being read back, all timing is done in
terms of whole cycles rather than half cycles. This
ensures that it is relatively insensitive to changes in
duty cycle which can result from level charges (drop-outs
etc.).

»

Copyright (C) 1984 Intelligent Software Limited

13/

29-Nov-84 EXOS 2.0 - Cassette Driver Page 10

The actual whole cycle times and frequencies wused for
the two tape speeds are:

- Fast Speed Slow Speed
leader cycle 424us (2358 Hz) 1000us (1000 Hz)
One bit 344us (2907 Hz) 800us (1250 Hz)
Zero bit 504us (1984 Hz) 1200us (883 Hz)
Sync bit 696us (1437 Hz) 1600us (625 Hz)

Overall Chunk Format

Each chunk starts with a synchronisation sequence. This
consists of several seconds of leader frequency to allow
the cassette recorder amplifiers and automatic recording
level circuits +to stabilise, and to establish the data
rate. This 1is followed by a single low fregquency sync
cycle to establish the phase of the signal, and then one
unused byte to recover from this one long pulse. The next
byte always has the value 06Ah and is to ensure that false
synchronisation does not occur.

After this byte is the data of the chunk, followed by a
few cycles of leader frequency (the trailer) to ensure a
clean »nd to the data. The overall format is shown in this
dlagram:

Internal Chunk Format

The data within a chunk is split up into a maximum of
sixteen 256 byte blocks, each starting with a byte’ count
and ending with a two byte CRC check. Thes= blocks are
preceded in the chunk by a single, one byte, block count
which defines how many blocks tnere are in the chunk.

The format of the data within a chunk is therefore as
shown in this diagram:

i B

r—

>

A- 4 A.a BL_.a&a NW_a &

L- L2

L.2

4.4 L.3

L a4

;1

4

il

J

29-Nov-84 EXOS 2.0 - Cassette Driver Page 1l

A header chunk has a block count of 255, but always
contains exactly one data block (of varying size). A data
chunk has a block count of 0 to 16, and each block 1is
always 256 bytes long, except for the last block in the
last chunk of the file. A .block containing 256 bytes of
data has a byte count of zero, which cannot be
misinterpreted because zero is not a valid quantity.

6.4 CRC Checking

Each data block ends with a 16 bit CRC check. This is
calculated by treating all bytes of the data block (not
including the byte-count byte) as a bit stream. A 16 bit
CRC register is initialised to zero at the start of the
block and the following process carried out on each bit:

“1) XOR the new bit into bl5 of the CRC register
2) 1If the new bl5 is set then XOR the CRC with 0810h
3) Rotate the CRC one bit left, putting bl5 into b0

Note that this is the same CRC algorithm as that used by
the network driver.

7. QUICK REFERENCE SUMMARY
7.1 EXOS Calls

OPEN CHANNEL - Opens a read channel and gets the header
chunk. Only one read channel allowed. Device
name "TAPE:", unit number ignored. Filename
compared with file on tape (unless null). No
EXOS variables need be set up before open.

CREATE CHANNEL - Opens a write channel and writes the
header chunk. Only one write channel allowed.
Device name "“TAPE:", unit number ignored.
Filename written into header. EXOS wvariables
LV_TAPE, SP_TAPE and PROTECT must be set up
be fore create.

CLOSE/DESTROY CHANNEL - Treated identically. For a write
channel will write out any buffered data.

READ CHARACTER /BLOCK - Only allowed for read channel.
Read characters from buffer until empty, then
read another data chunk from tape.

WRITE CHARACTER/BLOCK - Only allowed for write chanrel.

Writes characters into buffer and writes it out
to tape when it gets full.

ET14/5 Copvright (C) 1984 Intelligent Software Limited

!‘:‘

29-Nov-84 EXOS 2.0 - Cassette Driver Page 12

READ STATUS - Always returns C=0.
SET STATUS - Not supported.
SPECIAL FUNCTION - No special functions

7.2 EXOS Variables

LV_TAPE - Tape output level (1l...6)

SP_TAPE - Tape output speed. O0=fast, O0FFh=slow
PROTECT - Non-zero to write out protected file
TAPE_SND - Non-zero to suppress tape sound feed-through
REM1 - \ Control tape remote relays.

REM2 -/ 0 for ON, OFFh for OFF.

++++++++++ END OF DOCUMENT ++++++++4+

—y

e D e O e W (O s O i,

)

==

ks W

™

L.

| 2

L d w4

-

Lo Lo

L3 L o

i.J

L2 ¢.4

-—ad

(

L o4

26-Nov-84 EXOS 2.0 - Keyboard Driver Specification Page 1

l.

rPm11/8

Qverview of Features

The keyboard driver only allows one channel to be op=2n
to it at a time. A channal can be openad by giving the
device name "KEYBOARD:", any filename or unit number baing
ignor=d. If there i3 alrvzady a channel opsn to the
kayboard drivar then an ervor (.2NDCH) will be returned.
No EXOS variables ne2d to be set up before op2ning the
channel. :

Tha kayboard device has an interruot routin2 which scans
tha ka2yboard matrix avery vidao f{rame (50 timss pear
sacond). This detects key presses, translates tham into
ASCII cod=2s, and buffers a single charactar.

I+ supports programming of the eight function xeys.
Each one can be programmed separately for shifted and un-
shifted use giving effectively sixteen function keys. If
the string programmzd into any one of these function keys
is of zero length then instead of returning characters,
this function key will cause a software interrupt when it
is pressed. !

The eight function keys also each return a spscific code
if used with the CTRL or ALT keys, giving effectively
anothar 16 functions.

The keyboard driver treats the joystick as if it were
four cursor keys and oprovides diagonal movemant by
alternating two cursor codes. Autorepeat is supportad on
all keys. Both the delay until autorepeat begins, and the
autorepeat rate can be altered.

The xeyboard provides audible feadback by triggering tha
sound device to oroduce a click whensver a key is pressad.
This can be disabled by the user.

Character Input

All input is done using the EXOS read character and read
block calls. Read block is supportz=d for compatibility
with other desvices although it is not very likely to be
used. The keyboard is not an output device and so will not
accept write character or write block function calls.

With the exception of the function keys which can be
programmed with arbitrary strings, each key oproduces a
single ASCII code. Many keys will produce diffarent codes
when used in conjunction with the CTRL, SHIFT or ALT keys.

Canvriaght (C) 1984 Intellicent Software Limited

26=-Nov-84 EX0S 2.0 - Keyboard Driver Specificati~n Page 2

R

3

Lock Modes

Th= keyvboard 1is always in one of four modes: Normal,
snift-lock, caps=-lock or alt-lock. The default mode is
normal. The mods: can bz changed by various key

conhinationg:

CTRL LOCK - Enters Cans-lock mode.
SHIFT LOCK - Ent2rs Shift-lock mode.
ALT [OCK - Enters Alt-lock mode.

LOCK - Returns to Normal mode.

whan the keyboard is in any of the lock modes then it
b2haves as if the appropriate SHIFT, CTRL or ALT key was
h2ld down permanently. If the appropriate key is held down
during a lock modz then it temporarily counteracts the
affact of the lock. Thus for example in SHIFT LOCK mode
the action of the SHIFT key is effectively reversed. In
this example if the CTRL key is used while in SHIFT LOCK
mode it will behave as if it was in NORMAL mode. This
applies to all other combinations.

The current lock mode is indicated on thas status 1line
the first six characters of which are reserved for the
kayboard. It displays the word SHIFT, CAPS or ALT as
appropriate and is blank for normal mode.

There is an EXOS variable (LOCK_KEY) which is always set
to the currant lock status according to the following
codes:

0 - Un-locked
1 - CAPS lock
2 = SHIFT lock
8 - ALT lock

If this EXO0S variable is chang2d by the user then the
naxt keyboard interrupt will wupdate the lock mode
aopropriately. Any wvalues othar than the above which are
put into the variable will b2 chang2d to one of the four
allowed valu=s.

—— - e R . - = - . i

r‘\

r

=y

e e o, R B oy ey

™

L]

— -

L3 .3 .3 L3 L €t L4 s wa o

L.

(. 4

-4

26-Nov-384
2.2 Key Codes
These
normally,

ET13/5

EXOS 2.0 - Keyboard Driver Specification Pag= 3

ar: th: A3CIL cod2s returnad by

and with SHIFT, CTRL and ALT. (All

hexadacimal.)

O W 00~ WUk

Ny S e b

space

HKESCHWMWAPOWOZIPRURZIOM@DOOWP

NORMAL

31
32
33
34
35
36
37
38
39
30

2D
SE
40
5B
3B
3A
5D
5C
2C
2E
2F
20

61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78

SHIFT

CONTROL

31
32
33
34
35
36
37
38
39
1F

20
1
00
1B
38
3A
1D
1C
2C
2E
2F
20

0l
02
03
04
05
06
07
08
09
oA
0B
oc
0D
0E
oF
10
11
12
13
14
15
16
17
18

sach X2y both

valuzs are in

34
35
356
37
38
39
9F

2D
98
80
98
3B
3A
9D
9c
2C
2E
2F
20

8l
82
83
84
85
86
87
88
89
8a
8B
8C
80
8E
8F
90
9l
92
93
94
95
96
97
93

Copyright (C) 1984 Intelligent Software Limited -r

F|

26-Nov-84 EX0S 2.

3

Y
Z

ENTER
ESC
TAB

DEL
ER ASE
INS
STOP

joy wuo
joy down
joy left
joy right

Function
Function
Function
Function
Function
Function
Function
Ffunction

QO =JD U S W

Special Features

3.1

Keyclick control

When tha inte
a routine call=a
produces an audib
thz EXO0S variabl
variable to a non

Autorepeat Contr

Autorepzat i
DELAY_KEY which
RATE_KEY which is
key. Both of
DELAY_KEY should
DELAY_KEY is zero

0 - Keyboard Driver Specification Page 4

79 59 19 99
7A 5a 1A 9A
0D 0D 0D 0D
18 _ 18 1B 1B
09 09 09 09
A0 Al A2 A3
A4 AS As A7
A8 A9 A AB
03 03 03 03
BO Bl B2 B3
B4 B5S B6 B7
B8 B9 BA BB
BC BD BE BF
; . FO F8
. . Fl F9
. . F2 FA
; ; F3 FB
. . F4 FC
g : F5 FD
. . F6 FE
" : F7 FF

trupt routine detects a key press it calls
d KEYCLICK in the sound driver which
le click. This routinz is only called if
e KEY_CLICK is z2rto. Thus setting this
-z2ro valu2 will disable key click.

ol

s controll=2d by two EX0S variables.
is the d=lay until autorep=at starts and
the delay between each repetition of the
these are in wunits of 1/50 seconds.

always bz longer than RATE_KEY and if
then autorepeat is disabled.

—

L |

f"'-“ Lamatn |

~

=

S M e

r.

| Y | N | W—y |

F]

l-.

(s -3 L3 €. 5 L.a

L.a

L3 L3

€-4

[S

-

Lu Lo

26-Nov-84 EXOS 2.0 - Keyboard Driver Specification Page 5

3.3

Function Key Programming

There are sixteen logical programmable function keys
numbered 0 to 15. Keys 0 to 7 refer to the basic function
keys, 8 to 15 are the shifted versions. Any one of these

. may be programmed with a string of characters (which may

3.5

ET13/5

include control codes etc.) using a special function call.
The default string for all keys is a null string.

Paramaters: B = @R@FKEY (=8) (Special function code)

C = Function key number (0..15)

DE = Pointer to string (Langth byte £first)
Returns: A = Status

The maximum length for each programmed string is 23
charactars excluding the length byte. An error (.KFSPC)
will be returned if the string is too long.

If the programmed string is of zero length (null string)
then this function koy will cause a software interrupt whean
it is pressed. The software interrupt code will be ?FKEY
(10h) for function key 0, up to ?FKEY+1l5 (1Fh) for functiocn
key 15.

Stop Key Control

There is an EXOS variable called STOP_IRQ which controls
the action of the STOP key. If it is non-zero then the
stop key simply returns the ASCII Ctrl-C code (03h) in the
same way as all other keys. If STOP_IRQ is zero then
instead of this a software interrupt 1is caused, with
software interrupt code ?STOP (20h).

Hold Key Control

When the HOLD key is pressed the keyboard driver hangs
up in its interrupt routine until the HOLD key is pressed
again, This will thus freeze any listing etc. which |is
being produced. When it hangs up it calls a routine in the
sound driver to silence the DAVE chip since any sounds will
be frozen.

When the HOLD key is pressed it displays the message
"HOLD" 1in place of the current lock mode on the status
line. This message will be replaced by the correct lock
mode message (which 1is blank for normal mode) when
the hold is released. If the STOP key is pressed while in
hold mode then this will force an exit from hold mode, and
will then respond to the STOP kXey in the normal way.

While in hold mode the internal EXOS clock will still be
updated so it will not loose time.

Copyright (C) 1984 Intelligent Software Limited

e

1 e =

26-Nov-84 EXOS 2.0 - Keyboard Driver Specification Page 6

3.6

3.7

Normal Key Software Interrupts

When a nermal key is pressed the character code for it
is simply put in the buffer. However if the EXOS variable
KEY_IRQ is non-zero then as well as returning the character
code, a software interrupt will be caused with software
interrupt code ?KEY (21h).

Direct Joystick Reading

A special function call is provided which will directly
read the joystick on the main keyboard, or one of the two
external Jjoysticks on the control ports. The parameters
for this are:

Parameters: B = RRJOY (=9) (Special function code)
C =0 (internal joystick)
= 1 (external joystick 1)
= 2 (external joystick 2)
Returns: A = Status
C =Db0 - Set if RIGHT pressed
bl - Set if LEFT pressed
b2 - Set if DOWN pressed
b3 - ©Set if UP pressed
b4 - Set if FIRE pressed

b5..b6 - Clear

Note that for the internal joystick the "fire" button is
in fact the space bar. :

4. Quick Reference Summary

4.1

EX0S calls.

OPEN/CREATE CHANNEL - Treated identically. Only one
channel. Device name "KEYBOARD:". Filename and
unit number ignored. No EXOS variables to set
before open.

CLOSE/DESTROY CHANNEL = Treated identically.

READ CHARACTER /BLOCK - Returns ASCII key code or
characters of function key string.

WRITE CHARACTER/BLOCK =~ Not supported

READ STATUS - C=0 if key has been pressed, C=1 if not.
SET STATUS - Not supported.

N
R T St T ot T et B bt T L

£<q

L

Rl ace

[& - & L= L e

L4

L.

L]

o

26-Nov-84 EXOS 2.0 - Keyboard Driver Specification Page 7

SPECIAL FUNCTION - RQ@FKEY = 8 Program function key
@aJOY = 9 Direct joystick read

4.2 EXOS Variables R

DELAY_KEY = Delay until auto repeat starts

RATE_KEY = Rate of autorepeating

CLICK_KEY = Zero to enable key click

LOCK_KEY = Current keyboard lock mode

STOP_IRQ = Zero to enable stop key software interrupts
KEY_IRQ - Zero to enable normal Key interrupts

4.3 Software Interrupt Codes

?FKEY 10h \
; . \ Triggered by oressing function key
/ with null string programmed in.

?FKEY+15 = 1Fh. /

2STOP = 20h Triggered by ' pressing STOP key if
STOP_IRQ=0. No key code returned.

?KEY = 21lh Triggered by pressing any key 1f KEY_ IRQ=(.
Key code raturned as well.

++++++++++ END OF DOCUMENT ++++++++++

ADQUIPMENT BV
INDUSTRIZWEG 10-12
PCSTEUS 317
3440 AH V/CZNDEN
TEL 03420 - 18241

ET13/5 Copyright (C) 1984 Intelligent Software Limited «//

L e

L]

| —

[S

L. L..

L.o

1

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 1

1. In

Ry

troduction

The serial interface and network are provided as two
separate EXOS device drivers as far as the wuser is
concerned, with device names "SERIAL:" and YNET:"
respectively. However since they share the same hardware
only one of the devices can bz supported at a time. So if
the user wishes to open a channel to the serial device he
must first close any channels open to the network, and vice
versa.

., Only one serial channel may exist at a time, while any
number of channels may be opened to the network device
provided there is sufficient RAM for the 512 bytes of
buffer for each channel. All channels opened to the
network or the serial device support both input and output.

2. Hardware

The serial/network hardware consists of two cutputs and
two inputs. The outputs are the bottom two bits of an
output port (port 0B7h) as below. The other bits of this
output port are not used.

b0 - DATA OUT
bl - STATUS OUT

Bach of these outputs is connected to an open collector
inverter with a pullup resistor. Thus for example setting
pit 1 of this port will pull the STATUS OUT line low.
Clearing this bit will allow the STATUS OUT line to float
high unless any other connected machine is pulling it low.

The two inputs are available as bits of a general
purpose input port. The other bits are used for cassette
inputs and various other things. The port number is 0B6h
and the relevant bits are:

b4 - DATA IN
b5 - STATUS IN.

For use as a serial interface these inputs and outputs
are used separately to provide half duplex communication
(data can be sent either way but only one way at a time).
For use as a network the STATUS IN and STATUS QUT lines are
joined together, as are DATA OUT and DATA IN.

NOTE: Throughout this document the signal levels referred to

ET15/6

are the actual levels on the external lines. On the
Enterprise, both 1inputs and outputs are inverted
between these external lines and the appropriate bits
of the ports, so the actual values of the bits will be
clear for a high line and set for a low line.

Copyright (C) 1984 Intelligent Software Limited

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 2

3.

Serial Device

3.1 Low-level Operation

The serial device uses five wires - DATA IN, DATA OUT,
STATUS 1IN, STATUS OUT and REF (which may be used as an
offset signal reference instead of the 0 Volt GROUND line).
This allows independent handshaking on input and output.
The device supports both read and write EX0S calls. When
it is called with a "read character" function call it sets
the STATUS OUT line high (it is normally held low). This
signals the sending device that it can send a character.
It then monitors the DATA IN line (which is also normally
low) until it goes high signifying a start bit. The bits
of the character can then be read 1in, possibly with a
parity bit if that is selected (see later),

The serial driver handles a small buffer for incoming
characters. After one character has been read, the DATA
line is monitored for a short time to see if the sending
machine has any more to transmit. If another character is
sent, it will be read in and buffered. Up to sixteen
characters may be read and stored if they are immediately
available. Once thz buffer is filled, or if no further
start bit is detected within the timeout period, the STATUS
OUT 1line 1is pulled low again preparatory to returning to
the user program. However, some devices are rather slow in
responding to handshaking lines, so the DATA IN line |is
checked for a short time afterwards to ensure that no more

characters are being sent. Any spurious characters which
are received can be buffered.(there is an additional eight-
byte overflow in case the main buffer is full). Stored

characters. are supplied to the user one at a time when
"read character" is called, so this buffering is
transparent.

"Write character" is simoler than read character since
there 1is no problem of the other end of the connection
misbshaving (ie sending extra characters). To send a
character the serial driver monitors the STATUS 1IN line
until it is high (which it may be already if the receiver
is ready). Then the DATA OUT line is changed from its
guiescent low level to high for the start bit. The bits of
the data ares then sent, followed by a parity bit (if parity
is selected) and then the required number of stop bits
(DATA OUT Low).

[|

~A

#o

| i

(i |

-y -y

R

Lt | ~

- —

—

LS]

| - L S}

| L2

L4 L. o

L.a

./

| _—

L [

[

L L.-»

]

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 3

Use of the Serial Device

3.2.1 Read and Write Instructions

The serial device supports the normal EXOS read and
write instructions for single_characters or blocks. Data
is not interpreted in any way, SO machine code can be sent
just as easily as ASCII text.

3.2.2 Baud Rate Selection

The EXOS variable BAUD_SER governs the baud rate, which
applies both to input and output. Before opening the
serial channel the user should set it to the appropriate
value for the required rate, according to the following
codes:

0 => 50 baud 1 => 75 baud

2 => 110 baud 3 => 134.5 baud
4 => 150 baud 5 => 200 baud

6 => 300 baud 7 => 600 baud

8 => 1200 baud 9 => 1800 baud
10 => 2400 baud 11 => 3600 baud
12 => 4800 baud 13 => 7200 baud
14 => 9600 baud 15 => 9600 baud

The default setting is 15 (9600 baud). Numbers greater
than 15 are reduced modulo 16 before interpretation.

3.2.3 Word Format Selection

‘The EXOS variable FORM_SER, defines the word format
which is used for both input and output. Certain bits are
interpreted as follows:

b0 - Number of data bits: Clear => 8 bits
Set => 7 bits

bl - Parity enable. Clear for no parity.

b2 - Parity select (Ignored if b2 is clear).
Clear => even parity
Set => odd parity

b3 - Number of stop bits: Clear => two stop bits
Set => one stop bit

b4..b7 - Not used, must be zero.

The default setting is zero which selects 8 data bits,
no parity and two stop bits.

Note that the data bits are sent least significant
first, and if 7 data bits are selected then bits 0 to 6 of
the byte will be sent and bit 7 will be ignored. On
reception bit 7 will be cleared.

ET15/6 Copyright (C) 1984 Intelligent Software Limited

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 4

4. Network Device
4.1 Data Transaction Protocols

The natwork can be used in two modes: directed and
hroadcast. In directz2d mode, one machine sends data to a
second machine and all other machines ignore it. In
broadcast mode, one machinz sonis data to all the other
machines at once. Each machine on the network is
identified with a unigue addrzss in the range 1 to 32.

Each block that is sent consists of a hcader which may
or may not be followed by a block of data bytes. The
neader includes a synchronisation pattern, th2 source and
@~stination addresses and a type byte, of which the latter
contains a flag determining whethar any data bytes are to
fnllow. In every header there is also a count of the
~umls2r of data bytes in the block, although this is ignored
1Y th2 type byte specifies that no data at all will be
sent.

4.1.1 Broadcast Protocol

The header of a block which is being broadcast contains
a destination address of zero. The block will be received
by all machines which are listening and there is no method
of determining whether it was read correctly or not.

This lack of handshaking introduces problems if some of
the machines had interrupts disabled at the time of the
broadcast, and thus arrive at the network interrupt handler
once transmission has already started, or even after it has
finished. In order to avoid possible confusion brought on
by receiving only part of a block, the destination machines
check for the synchronisation pattern which is supplied in
the block header. The header consists of a repeating four-
byte block, which continues for long enough to give the
receiver time to be ready in most cases while obviously
being kept reasonably short in order to save time.

4,1.2 Directed Data Protocol

As Directed Data is destined for just one machine, the
sending machine can wait for acknowledgement in order to
ensure that the destination is listening, and to confirm
that the data block is received without error.

(‘\

— —y —_— —— e | ~— ~— —— -—

-9

£y e

r-

9

-

— -“—.

v-a

L -]

23-Nov-84

When
number

D accept

EXOS 2.0 - Serial/Network Driver Page 5

a computer reads a block header which has its ‘own

as the destination address, and is preparad to
the block (see later), then it sends back an

acknowledgement to the source machine. This is simply a

signal
receive;
(about

4

on the DATA line to show that it is ready to

the absence of the signal within a given time
bit periods at the selected baud rate) is

interpreted by the source machinz as an error.

If any data bytes are to be sent, these are transmitted
once the header has been acknowladged. After tha complete
data block has been received, the destination machine must
carry out the checksum calculation and either confirm the
data by sending another acknowledgement signal, or reject
it by not responding.

L]

L]

~r Error Response
When a destination machine finds an error it returns
immediately from the network interrupt routine without
setting any interrupt flags .(see later). The source
machine, when it finds no acknowledgement signal after
sending a header or a data block, retries as follows:
1. Release network *
S 2. Wait for long random delay, of the order of a
quarter of a second.
3. Try to gain control of network and send again
* Note: It is extremely important that under no
circumstances should an error occur which causes
a machine to hang irretrievably while it is in
control of the network, as this would also hang
the network itself and thus any other machines
which are trying to use it. Any time a machine is
wgiting indefinitely for a signal on the network
lines, pressing the STOP key will regain user
control,
4.1.3 Accepting Data Blocks
A machine is only prepared to receive transactions from
another computer on the network if there is a suitable
channel open to the network driver: -
]

ET15/6

Copyright (C) 1984 Intelligent Software Limited WQ)

23-Now-84 EXOS 2.0 - Serial/Network Driver Page 6

Whean a channel is opened by the user a remote address
~unb2r is given as the unit number. If this is zero then
blocks will be accepted from anywhare. 1f it is non-zero
then only blocks from that specific network address will be
accepted on this channel, any number of such non-zero
address channels may b2 opened provided they all - have
diffzrent addresses.

If a non-specific channel is opened it will only receive
data from machines which are not explicitly served by an
individual channel. Only one non-specific channel may be
open at a time.

4.2 Low-level Network Operation

4.2.1 Hardware Connections

The network driver is rather more complicated than the
serial interface driver because it has to include protocols
to avoid «collisions. It uses the same hardware as the
serial driver. All machines on the network are joined by
three wires: GROUND, DATA and STATUS. On each machine the
DATA 1line is connected to both DATA OUT and DATA 1IN, and
the STATUS line is connected to both STATUS OUT and STATUS
IN. This allows the machine to pull either line low (the
outputs are open collector) and also to monitor the level
on each line.

The STATUS 1IN line is also connected to the external
interrupt input so the status line going low can trigger an
interrupt. This is how the machine can respond to data
sent down the network asynchronously.

4.2.2 Obtaining Control of the Network

When a machine wishes to send data to another machine,
or to broadcast it, it must first get control of the
network. Only one machine can be in control of the network
at a time and the protocol used for obtaining control is
designed to ensure that collisions (two machines taking
control at the same time) do not occur. The penalty for
this 1is a slight loss of speed and a priority ordering of
machines on the network.

There is a timing constant C defined, which corresponds
to a delay of the order of one millisecond. When a machine
wants control of the network it must follow this procedure:

1. Both STATUS OUT and DATA OUT should be left high

whenever this machine does not have control of
the network.

2. If the STATUS line is high go to step 4

("'\

e T s W SR aie SO o (O . 2 T D

L I |

| S— . -— - [. -

i

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 7

4.

BET15/6

3. Wait until the STATUS line is high and remains
High for a period of RND*C where RND is a random
number in the range 1 to 1l6. If the STATUS line
does not remain high for the required time then
repeat this step with a new random number.

4. Pull the STATUS line low.

5. Wait for a period of C*ADDR wh2re ADDR is the
address of this machine on the network,
constantly monitoring the DATA line. If DATA
goes low for any time during this interval then
release the STATUS line (set it high again) and
return to step 3.

5. Pull the DATA line low and then proceed to send
the block header (see later).

Throughout a network transmission, interrupts are
disabled because of the timing considerations.

2.3 Attracting Attention - Protocol

Once a machine has secured itself control of the
network, it can start the transmission of the data block.

Pirst of.all, it has to attract the attention of its
intended audience. This is done by repeatedly sending a
header consisting of a synchronisation byte, the
destination and source addresses of this block and a type
byte. The bytes are sent in the order
sync/dest/source/type/sync.... and are terminated with the
ones complement of the dest byte in the position of the
next sync byte. The format of these bytes is as follows:

Machine address bytes

The destination address 1is the number of the
machine on the network to which this block is being
sent; if it is zero then it indicates that it is a
broadcast block, which all machines should receive.
The source address is the number of the machine which
is sending the block.

Byte format:

b0..b5 = machine address: 1 to 32, or 0 for broadcast
(0 only valid as a destination address)

b6 - source/destination selection: => addr=source
1l => addr=dest

b7 - complement of bit 6
INDUSTRIZV'CC 10-12
POSTZUS 311
3440 A4 VUCZROEN
TCL. 02420-18241

Copyright (C) 1984 Intelligent Software Limited

ACQUIPIIZENT BV

s
»’E;.J.ﬂ

23-Nov-84

EXOS 2.0 - Serial/Network Driver Page 8

Synchronisation byte 00000000B

The synchronisation byte is required because fast
interrupt response is not guaranteed; the STATUS line
can be brought Low at any time, perhaps while
interrupts are disabled on the required destination
machine. The synchronisation method 1is detailed
below.

Type byte

The type byte contains information defining what kind of

transaction this is, including whether or not any data
bytes will be sent after the header. Its format is as
follows:

4.2.4

b0 - data flag: 0 => no data to follow header
1 => data block to follow

bl..b4 - not defined - must be zero

b5 - end-of-record flag:
1l => end of record
If the block was sent as a result of a Flush
or Close command, this bit is set to force
the network Read Character routine to return
the 'End of file' status, thus identifying
the end of a given message or file. The
next Read Character or Read Status call will
revert to the ‘'Character not available'
state, unless the end-of-file flag is also
set...
b6 - end-of-file flag:
1l => end of file

Only ever set in conjunction with the end-
of-record flag, it implies that the sending
machine has closed its channel to this
computer. All subsequent requests for
channel status or for further characters
will return the 'End of file' condition,
until another block of data is received on
this channel.

b7 - Type byte flag - must ALWAYS be set to 1, so
that the synchronisation byte is guaranteed
to be the only string of eight zero bits in
the header.

Destination Machine Synchronisation

As stated above, there is some problem in synchronising

the destination machine, which stems from the uncertainty

of

catching the machine while its external interrupt is

enabled. This is now explained in detail:

r—

| aste, B e |

r-——

r—1

r— | adiite |

9

——

ha | —y

| - | —

h_a L4

| — 4 bk 4 bA_a

L _ s

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 9

If external interrupts are disabled, a latch will record
the interrupt transition. The interrupt will then take
place as soon as the input is re-enabled, and tha
destination machine will immediately start looking at the
DATA line.

The source. machine is not expected to wait for long

_enough to ensure that all machines will be 1listening, but

instead begins to output its attention-grabbing sequence as
soon as it is ready - in the hope that all relevant
machines will catch on before that sequancz finishas. Tha
protocol must therefore cope with a destination machine
starting to read the DATA line at any time during this
period.

RS232 character framing is by means of DATA line levels,
so any transition from 1 to 0 can be interpretad as a start
bit. This means th.t a comouter which starts to listen to
tha DATA linz at an arbitrary momsnt may pick up what it
thinks is a start bit when in fact it has simply found a
changing level in the middle of a character. The purpose
of the synchronisation byte in the header saquence is to
make sure thac the character framing is correctly aligned
as quickly as possible.

The method chosen for achieving this is to send 2
synchronisation character made up of all zero bits, and to
tell the destination machine to check every start bit
transition until it finds one which is followed by eight
zero bits and a stop bit. The next 'start bit' is then
guaranteed to be the true start of a character.

The above specifications require that any aspiring
destination machine should follow this algorithm when it
enters the interrupt routine:

1. If STATUS 1line is high, return. (This would
occur if the response had been so slow that the
transfer was all over, or had been abandoned due
to lack of interest)

2. Wait until the DATA line is low

3. Wait for DATA line to go high (possible start
bit)

4. Delay for required time to synchronise to middle
of bits

5. Continue to read DATA at one-bit intervals until
a low bit is found

6. If any number other than nine high bits were
found (including the start bit) go to 4

ET15/6 Copyright (C) 1984 Intelligent Scoftware Limited

23-Nov-84

10.

11s

12.

14.

EXOS 2.0 - Serial/Network Driver Page 10

Store the synchronisation byte, and the next
three bytes which are received, in scratch
memory. These four values are the header
pattern, and should be sent repeatedly by the
source machine.

Check that the destination byte 1is wvalid, and
that it holds either this machine number or the
value zero. Return if this is not the case.

Check that the source byte is wvalid, and that
there is a channel open which can serve the
specified machine - ie. either a specific channel
for that address, or a non-specific channel.
Otherwise return.

Check that the type byte is valid.

Continue to read bytes. Check that each group of
four matches the values stored in step 7, and
continue to loop until a value does not tally.

The wvalue which disagrees should be the sync
byte, and it should contain instead the ones
complement of the dest byte. If this is not the
case, return.

Read the next two bytes. If they are 1l's
complement of each other then the latter is the
byte count for the following data block. Else
return.

If thé destination address was non-zero (ie.
transaction is directed rather than broadcast),
pull DATA low for about lms as acknowledgement,
then release it.

NOTE: Whenever a byte is read, STATUS is checked for still
being held low by the source machine. If it goes high
at any time, the link is immediately assumed broken.

4.2.5 Sending the Data Bytes

When

the destination machine pulls the DATA line low,

and leaves it there for at least half a millisecond, that
is the signal to the séurce machine to start sending any
data which may be included in this transaction. When DATA
is released, the sender pulls it low again immediately then
gets on with sending the data block.

N | e | =

™

r

| Sp— [

—a L__a L L .a | —

ndd

| — A

i_d

23-Nov-84

EXOS 2.0 - Serial/Network Driver Page 1l

The format of the data block is:

The byte count which was réceived in the header seguence
a true count of the number of data bytes in the block.
A value of zero means 256 bytes.

is

The

two CRC bytes are a cyclic redundancy check

calculated on all data bytes in the block (but not the

header).

The CRC is evaluated as a l6-bit value, which is

re-calculated when the data block is received. If the CRC
calculated on reception is not the same as the value which
was sent then the block is assumed tc be garbage.

o tha
wel
is

start or
updated.

The

algorithm for calculating the CRC is the same as

t used for the cassette driver but is explained here as

1:

For purposes of the CRC calculation the data block

regarded as a bit stream. Each time a data bit (not a

stop bit) is sent, a 16 bit CRC register is
This is done in the serialisation routine which

is shared with the serial interface driver, so the CRC 1is
also calculated on data sent or received through the sarial
handler even though this is not required.

bit

The CRC register is a 16 bit value which is initialised

to zero at the start of the data block, and then when 2ach
1ls

sent or received the following operations are

performed:

4.2.6

Same

1.

2.

3.

XOR the new bit with the most significant bit of
the CRC register and set the carry to this value.

[the carry is set then XOR th= register with
0810h.

Rotate the register one bit left, moving the
carry i1nto the least significant bit.

Data Transmission Format

All network blocks are sent as a series of bytes in the

format as the serial interface driver sends them,

using a word format of eight data bits, two stop bits and
no parity. The characters are transmitted at the currently
selected baud rate, which defaults to 9600 baud. *

J

ET15/6

Copyright (C) 1984 Intelligent Software Limited

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 12

4,3 TUsing the Network
4.3.1 Address Determination

The above protocols require that each machine on the
network has a unigue address, so the network handler
refuses to open channels onto the network unless the
computer has been given its address.

The address is held in the EXOS variable ADDR_NET, and
must be set by the user before attempting any network
operations. At power-on or cold reset it is set to zero,
which is invalid as a network machine number.

4.3.2 Opening Channels to the Network

As mentioned before, each channel which is opened to the
network must specify a remote machine number for which the
channel is reserved, although an address of zero will allow
data blocks to be received from any machine. This number
is given in the call to the EXOS channel opening function
as the unit number (see EXOS kernel specification). Any
filename given is ignored.

Note the clear distinction between the channel number
and the network address of the machine which that channel
serves. The two are completely independent; it is up to
the user to keep track of which channel serves which
machine when he wishes to output to the network. For
input, both values are made available to him by the
interrupt handling code (see below).

4.3.3 Interrupts

“when the first channel is opened to the network, the
external interrupts are enabled and will remain so until
the last channel is closed. Whiie ext=rnal interrupts are
enabled, any transition from high to low on the STATUS line
will cause the network interrupt service routine to be
called. A particular consequence of this is that opening a
serial channel (for which the guiescent line levals are
low) on a machine which is connected to a network, will
cause any machines using the network to be interrupted, and
to hang in anticipation of a data block.

4.3.4 Buffers

Each channel opened to the network sets up two buffers
of 256 bytes 1length; a reczive buffer and a transmit
buffer.

rf‘_

-

[B e

| e

-

A .

| —_— -

| S

| p—1

| — b.a L_a

E_=a

e

ET15/6

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 13

The receive buffer is filled with data bytes which
arrive in blocks on the network, and can hold just one
block at a time (no matter how short that block is; even a
block of just one byte effectively 'fills' the receive
buffer until it has been read or cleared). The user resads
from the buffer until it is empty, when it will be able to
accept further blocks from the network. The buffers of
each channel are independent, so blocks can be raceived
from any machine provided that the receive buffer which
serves it is free.

The transmit buffer is filled by the user, and sent as
complete blocks onto the network. It can b2 forced onto
the network at any time by using a "flush" special function
call, or will be sent automatically when the 256th byte is
written to it. The Transmit buffer will also be £flushed
automatically if the channel is closed, thus enabling files
of any length (from 1 byte upwards) to be sent to anothar

machine while the buffering remains transparent.

4.3.5 Read and Write Functions

The network device supports the usual EX0S read and
Wwrite character function calls and the block read and write
calls.

The reception of blocks from remote machines is done by
an interrupt service routine, which is invoked when the
STATUS line goes low. The machine will remain in its
interrupt routine watching for the DATA line to go low and
then read in the header. If the header Iis read
succesfully, and the block is one which this machine wants
to receive, 'then the data is read into the receive buffer
for the channel serving the given remote machine. Each
channel can buffer one block at a time in its receive
buffer.

The network driver can cause a software interrupt when a
block is successfully received from the network. An EXO0S
variable called NET IRQ is provided to switch this function
on and off. If NET_IRQ is zero then software interrupts
are enabled, and the occurence of a successful networx
interrupt will cause the value ?NET to be placed in the

variable FLAG_SOFT_IRQ.

The EXOS variable CHAN NET is used to pass to ths2 user,
the channel number from which buffered data can be read.
CHAN_NET is only updated when a character is read from-the
channel which it specifies, or if that channel is closed.
It is then changed to the channel number of the lowest
numberad machine which has caused an interrupt. So 1if
machines 2 and 10 send a block each while data sent by
machine 5 is still waiting to be read, then whan CHAN_NET
is changed it will point to the channel for machine 2
rather than 10 whichever interrupted first. Machine 10

Cooyriaht (C) 1984 Intelligent Software Limited

23-Nov=84 EX0S 2.0 - Serial/Network Driver Page 14

will be serviced later, as soon as it becomes the lowest
number awaiting attention. This allows specific machines
to be given priority - a teacher operating from machine 1
will almost always havz his message received in preference
to a message from another machine, while broadcast messages
are given The highest priority of all. If no data is
available CHAN_NET holds the wvalue 255.

Whenever CHAN_NET is updated, the EXOS variable MACH_NET
is also altered to hold the number of the machine which
caused the interrupt. This is vital when a block is
received on the non-specific channel, since there would
otherwise be no way of telling which machine sent it. In
other cases it is simply useful - as stated above, the user
would normally be expected to keep his own records of which
channel s2rves which machine.

An application oprogram requests bytes by calling the
EXOS RDCH or RDBLK routines, and is given bytes from the

receive buffer if they are available. If not, there are
two possibla responses: If an End-of-record flag was
received in a header for this channal, an 'End of file'
condition 1is returned. Otherwise, the Read routine will

halt until this channel receives data from the network.

The "read channel status" function call is supported, so
the user can check for the 'End of file' or 'Character not
available' conditions before trying to read a character.

Writing to the network is carried out as a series of
WRCH or WRBLK function calls. If an error is encountered
when the buffer is to be sent, the network handler will
continuously retfy at intervals of between guarter and half
a sncond. This can be stopped by pressing the STOP key,
which will also cause the buffer contents to bz cleared
bnfore the handler returns. Note that this error condition
can only be detected for directed data blocks; broadcast
data does not require acknowledgement and therefore cannot
check that the data was received properly.

("\

e |

‘M

-

L |

r—1

-

£..4 b_s b o ks L.a B_ 4 h_as Aea A4 K_a

L_—a

L. ..

L_a

-

| Y

23-Nov-84 EXOS 2.0 - Serial/Network Driver Page 15

5. Quick Reference Summary

5.1

ET15/6

SERIAL - EXOS calls

OPEN/CREATE CHANNEL - Treated identically. Only one

channel, and no network channel.
Device name "SERIAL:". Filename
and unit number ignored. No EXOS
variables to be set before open.
CLOSE/DESTROY CHANNEL - Treated identically.
READ CHARACTER /BLOCK - Reads characters from serial
input, some buffering.

WRITE CHARACTER/BLOCK - Writes bytes without interpretation.

READ STATUS - Always character ready (C=0).
SET STATUS - Not supported.
SPECIAL FUNCTION - No special functions.

NETWORK - EXOS calls

OPEN/CREATE CHANNEL - Treated 1identically. Multiple
channels allowed, but no serial channel. Unit
number defines destination machine number,
filename ignored. Device name "NET:". EX0S
variable ADDR_NET must b2 set before open.

CLOSE/DESTROY CHANNEL - Treated identically. Will try to
send any buffered data.

READ CHARACTER /BLOCK - Reads characters from buffer if
avaialable, else returns EOF or waits.

WRITE CHARACTER/BLOCK - Puts bytes in buffer. Written
to network when FLUSH special function call 1is
done, or channel is closed, or buffer is full.

READ STATUS - C=0 if character in buffer.
C=0FFh if end of record.
c=1 if buffer empty.

SET STATUS - Not supported.

SPECIAL FUNCTION - R@@FLSH = 16 Send buffered data with
end-of-record flag set.
@A@CILR = 17 Clear send and receive
buffers.

EXOS Variables

FORM_SET - Serial format. Set to zero by network.
BAUD_SER - Serial and network baud rate.

ADDR_NET - Network address of this machine.
CHAN_NET =~ Channel on which network block raceived.
MACH_NET - Machine from which network block received.

Copyright (C) 1984 Intelligent Software Limited -Jf;?

1

23-Nov-84 EXOS 2.0 - Serial/Network Driver

Zero to enable network software interrupts

Software Interrupt Codes

Occurs when a data block is received by

a network channel if NET_IRQ is zero.

++++++++++ END OF DOCUMENT ++++++++++

[s B i

gy

Lo |

r—-.

| -

Lo L o h-w E_ 4 B a bo4a L_o RL.a N.s r_a

| S

L.

—

Al

26-Nov-84 EXOS 2.0 - Printer Driver Specification Page 1

1.

2"

3.

General Device Interface

The printer driver is a very simple device which Jjust
sends characters to a printer (or other device) using the
built in centronics type parallel interface.

Only one channel at a time may be open to the printer
driver, if an attempt is made to open a second channel then
an error (.2NDCH) will be returned. A channel can be
opened by giving the device name "PRINTER:", any filename
or unit number is ignored.

Having opened a channel characters can be written using
either the single characer write or the block write
function call. The characters will be sent without any
interpretation at all, and all 8 bits are sent.

Hardware Details

The hardware consists of one eight bit output port for
the parallel data (port 0B6h),r one other output bit for a
data strobe (bit 4 of port OBih) and one input bit as a
ready signal (bit 3 of port 0Bé6h).

To send a byte the printer driver outputs the character
to the data port and then waits until the ready signal goes
low, When the ready signal is low it strobes the data by
setting the data strobe low for a few microseconds and then
setting it high again (it is normally high when not in
use). This completes the sending of a character.

The other bits of output port 0B5h are used for wvarious
control operations such as scanning the keyboard, and
controlling remote control relays. A wvariable (PORTBS)
which is at a fixed address defines the current state of
this port and the printer driver ensures that all other
bits of the port are maintained in their correct state.

Quick Reference Summary = EXOS calls

OPEN/CREATE CHANNEL - Treated identically. Only one
channel. Device name "PRINTER:". Filename and
unit number ignored. No EXOS variables to ke set
be fore open.

CLOSE/DESTRQY CHANNEL

READ CHARACTER/BLOCK

WRITE CHARACTER/BLOCK

Treated identically.
Not supported.

READ STATUS - Not supported.
SET STATUS - Not supported.
SPECIAL FUNCTION - No special functions.

++++++++++ END OF DOCUMENT ++++++++++

ET16/2 Copyright (C) 1984 Intelligent Software Limited

Writes bytes without interpretation.

-
£

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 2

The video and keyboard channels specified in VID_EDIT
and KEY EDIT must be opened before opening the editor
channel. The video page must be a text mode and must be at
least 3 rows by 4 characters. The editor determines the
size and mode of the video page when the channel is opened
and returns an error (.EVID) if it is unsuitable. Note
that the editor does not display the video page on the
screen, it is up to the applications program to take care
of this.

The actual size of the editor's buffer which is
available for storing text is:

256 *BUF_EDIT + n

where 'n' is between zero and 255 and depends on the width
of the video page (space reserved for the ruler line) and
the exact size of the editor's variable area. The wvalid
range for BUF_EDIT is thus zero to 254.

The editor will work with any size buffer but it is
sensible to ensure that it is at least as big as the video
page so that the editor is always capable of displaying a
full page. The editor stores lines as variable length in
its buffer so, since short lines are common, it generally
manages to store more than the calculated minimum number of
lines.

—y r

b]

3. General Editor Features
~
3.1 The Editor's Text Buffer

As mentioned before the editor has a text buffer in
which it stores its text, and the video page just provides

a window onto part of this buffer. Text is stored in the
buffer on a line orientated basis. Each line has a three
byte 1line header containing certain flags and margin
information. This is followed by the text of the line
itself stored in ASCII. The line is terminated by a
special character which indicates whether it is the last
line in a paragraph and whether it is the last line in the
buffer.

The 1lines are stored with variable length so if a line

only has four characters on it, followed by 36 spaces then
the 36 spaces are not stored. This improves buffer wusage
very significantly since in general short lines are Qquite
common. There is no limit to the number of lines in the
buffer other than the total size of the buffer.

— ~— - -y

-——

e

L. | - A | ——y [—1 | T S | S—1

h.oa

| |

O

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 1

1,

2.

Introduction

All the other built in device drivers provide an
interface to some aspect of the hardware such as the
cassette I/0 circuitry or the DAVE chip. The editor
howaver does not interface directly to any hardware,
instead it provides a higher level user interface to two of
the other built in drivers - the video driver and the
keyboard driver.

An editor channel can be thought of as an intelligent,
full screen editing terminal handler. It can bs us2d by an
applications program to provide all of its general purpose
communication with a user. For example the IS-BASIC
cartridge does all of its screen and keyboard I/0 through
an editor channel. BASIC will be used frequently in this
document as an example of how to use thes editor.

The editor can support any number of channels open to it
at a time, each channel corresponds to a separate
"document"” which is being edited. The word document here
is used loosely since for example the editor channel wused
by BASIC is referred to as a document although it 1is
actually a collection of BASIC commands, program listings,
error messages, program output, etc.

Each editor channel has video channel and a keyboard
channel associated with it. Different editor channels can
share the same keyboard channel‘ (which is essential since
the keyboard driver only allows one channel to be open to
it), but must have separate video channels.

Each editor channel also has an area of channel RAM
which it uses for a text buffer. This buffer can be any
size from a few hundred bytes to just under l6k and will
typically be a few kilobytes. Text can be entered into the
editor's buffer either from the applications program or
from the keyboard. The editor writes characters to the
video page in such a way that it is kept updated to form a
"window" onto the text buffer. This is not a true window
since the video page has its own copy of the text it |is
displaying.

Opening Channels

An editor channel can be opened by giving the device
name "EDITOR:", any filename or unit number is ignored.
Before opening an editor channel, three EX0OS variables must
be set up. These are:

VID_EDIT - Channel number of video page.
KEY_EDIT - Channel number of keyboard channel.
BUF_EDIT - Size of editor buffer in units of 256 bytes.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

/
14)

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 2

The video and keyboard channels specified in VID_EDIT

and KEY_EDIT must be opened before opening the editor
channel. The video page must be a text mode and must be at
least 3 rows by 4 characters. The editor determines the
size and mode of the video page when the channel is opened
and returns an error (.EVID) if it is unsuitable. Note
that the editor does not display the video page on the
screen, it is up to the applications program to take care
of this.

The actual size of the editor's buffer which is
available for storing text is:

256*BUF_EDIT + n

where 'n' is between zero and 255 and depends on the width
of the video page (space reserved for the ruler line) and
the exact size of the editor's variable area. The wvalid
range for BUF_EDIT is thus zero to 254.

The editor will work with any size buffer but it is
sensible to ensure that it is at least as big as the video
page so that the editor is always capable of displaying a
full page. The editor stores lines as variable length in
its buffer so, since short lines are common, it generally
manages to store more than the calculated minimum number of
lines.

General Editor Features

3.1 The Editor's Text Buffer

As mentioned before the editor has a text buffer in
which it stores its text, and the video page just provides
a window onto part of this buffer. Text is stored in the
buffer on a line orientated basis. Each line has a three
byte 1line header containing certain flags and margin
information. This 1is followed by the text of the line
itself stored in ASCII. The line is terminated by a
special character which indicates whether it is the last
line in a paragraph and whether it is the last line in the
buffer.

The lines are stored with variable length so if a 1line

only has four characters on it, followed by 36 spaces then
the 36 spaces are not stored. This improves buffer usage
very significantly since in general short lines are quite
common. There is no limit to the number of lines in the
buffer other than the total size of the buffer.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

- % -

—-

-

L e 1

R4 | —

L Y

[A_s | P | —

L.a

L.a

boa Lo L_di L_s L.

L_a

| R

L4

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 3

ET18/4

The buffer is arranged as a circular buffer so the start
of the text may be anywhere in the buffer, and the end of
the buffer may occur at any point in the text with the text
continuing again at the start of the buffer. This avoids
ever having to move the whole text up or down in the
buffer.

When the Buffer Becomes Full

When new text is entered into the buffer, either at the
end or into the middle of the buffer this clesarly uses up
buffer space. Eventually the buffer may become Zfuil. In
fact it is generally the case when using BASIC that the
buffer is nearly full most of the time, as it contains
previous commands and so on which have scrolled off the
screen.

Whenever there are less than 100 bytes spare in the
pbuffer the editor displays a number on the right hand side
of the status line indicating the number of free bytes. As
characters are tyoed in, this number will get smaller until
it eventually reaches zero. This number is only displayed
when waiting f{or k2yboard input from the wuser, so for
example the number cannot be seen when BASIC is listing a
program even though the buffer may be full.

when the buffer is full and another character is typed
in (or written by the applications program), the editor has
to delete some of the existing text to make room. It
always deletes a whole line of text and it generally
deletes the first 1line since this will normally be the
oldest and least useful cne. If the first line of the text
is displayed on the video page then it deletes the last
line instead, to avoid deleting text which is displayed.

If the editor buffer is very small or there are some
very long lines, then every line may be displayed at once,
so the editor has no choice but to delete a line which is
displayed. In this case the editor deletes the last line
unless the cursor is on the last line, in which case it
deletes the first line and scrolls the page up.

Note that because the editor buffer is circular,
deleting this 1line of text does not involve moving the
whole text up to fill the gap (at least not usually).

Copyright (C) 1984 Intelligent Software Limited /33

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 4

3.3

Margins and the Ruler Line

Each line in the buffer has its own individual left
margin position. When a new line is created it will be
given a 1left margin equal to the current left margin
setting which can be displayed on a ruler line at the top
of the video page. There is also a right margin which is
displayed on the ruler line. In general text can only be
entered in between these margin settings although there is
the facility of temporarily releasing the margins.

Paragraphs

Lines in the editor's buffer are grouped together in
paragraphs. When the user presses ENTER (or a CR is
received from the applications program) this marks the
current line as the end of a paragraph. It also moves the
cursor to the start of the next line which will be the
start of a new paragraph (and may have the side effect of
sending text to the applications program - see later).

If the user types a very long line then the editor will
split the line at a sensible point (using a process called
word wrap described in the next section) to give two lines.
The first line will be terminated by a soft carriage return
marker ¢to indicate that it is not the end of a paragraph.
In this way long paragraphs can be built up.

There is no indication on the screen of where paragraphs
start and end but some of the editing functions operate on
paragraphs, and the paragraph is the basic unit for sending
text back to the applications program.

Word Wrap

Word wrap is the process which decides where to split a
line which is too long. When a character is typed outside
the margins (assuming that margins are not released) then
the editor searches back to find the start of the word
which contained that character and moves the whole of that
word onto the start of a new line.

This process is done with all text received from the
applications program as well as that typed at the keyboard
from the user. Thus BASIC listings are subject to word
wrap so keywords and variable names etc. will not be split
in half.

[t Ttk T e, SR e, B coitin.

——

3

L]

Bl

| —1 | L S

| S —d | S |

L—a L5 L.as l_s

L L

L_a

J

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 5

3.5

3.6

Long Lines

Although a very long line which is typed in will be
split by word wrap, it is possible to create a long line by
inserting characters into the middle of a line, which will
push the rest of the line to the rlght. In this way it is
possible to create a line which is too long to be all
displayed on the video page. This fact is marked by a red
angle bracket (">") on the extreme right hand end of the
line on the video page. This is an overflow marker.

The part of the line which has gone off the page cannot
be accessed although it is remembered by the editor. The
line can only be accessed by reformatting it to bring it
back onto the page. There are various editing commands
which can do this described later on.

Flashing Cursor

The EXOS video driver which the editor uses only
provides a static non-flashing cursor display, although
this can be turned on and off. The editor implements a
flashing cursor by simply turning the video page's cursor
on and off regularly while it is waiting for input from the
user, It always ensures that the cursor is switched off

when it is doing any editing Ffunctions, since these «can

result in the cursor having to move all over the screen and
it is rather messy if the cursor can be seen doing this.
{

The editor also switches the cursor off whenever it
returns to the applications program and it remains off when
the applications program 1s writing characters to the
editor. This results in a nice clean cursor display, where
the flashing cursor always means that the editor is waiting
for the user to type some input.

4. Writing to the Editor

ET18/4

Any characters in the range 20h to 9Fh, written to the
editor are regarded as printing characters and are put into
the text buffer at the current cursor position and
displayed on the video page. They are subject to word wrap
as described above.

Copyright (C) 1984 Intelligent Software Limited

s
) o<

29-Nov-84 EXOS 2.0 - Editor Device Specification

5.

The editor will also interpret the following

codes. All codes in the range 00h to 1Fh not mentioned .

here are ignored.

Page 6

control

00h (NUL) - Writes a null to video to check it is still OK.
09h (TAB) - Move to, or insert spaces to, next tab stop.

0Ah (LF) - Ignored.
00a (CR) - Goes to start of new line (equivalent to CR-LF).
i8h (*X) - Set left margin at cursor column.

19h (*Y) = Clear to end of line.

1Ah (*Z) = Clear whole buffer and screen and home cursor.

1Bh (BESC) - Starts escape sequence (see below)

The only escape Sseguence interpreted by the editor is to
position the cursor at arbitrary co-ordinates. This 1is
identical toc the wvideo driver escape sequence for this

function and details can be found in the wvideo

driver

specification. It positions the cursor at the specified

co-ordinates of the video page, regardless of which
of the editor's buffer is currently being displayed.

Codes in the range 0AOh to OFFh are interpreted
as if they had been received from the keyboard.

portion

exactly
These

provide various editing functions and cursor movement.

They are described in detail in the section on
functions.

Reading From the Editor

s

"

editing

When the editor receives a read character function call,
it examines the EXOS variable FLG_EDIT. This byte contains
a eeries of flags which control the response of the editor
to inis read character call. The editor's action will
first be described in general terms without reference to

the individual flags. The effect of =ach flag will
described in detail.

Basic Editor Read Action

then be

Assuming for now a typical setting of the flags in

FLG_EDIT, when the editor receives a read character
interprets this as a request to send a line of text

call it
back to

the applications program. It does not return a character

immediately but records the state of the flags and
its main editing loop-which provides the actual

enters
editing

facility to the user. It is only while in this loop that
the cursor on the video page will flash. A flashing cursor
thus indicates that the editor is waiting for a key to be

pressed.

imt rAAr Tabka1Vlmnmk Cafiiina

Timi+taAd

[antie ML cli

-

===

| _— .2 o [

—

L a4 L_e b

.

s

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 7

This loop reads a character from the keybocard, responds
to it and then loops back for another one. This allows the
user to type in text which will be inserted into the

" editor's text buffer. and displayed on the video page, and

to carry out various editing functions. The details of the
editing functions are given later. There are two keys
which are of importance here - ESCAPE and ENTER.

If ESCAPE (ASCII code O0lBh) is received from the
keyboard then this character will immediately be returned
to the applications program as the response to the read
character call, regardless of the state of any of the
FLG_EDIT flags. This provides a way of interrupting a line
input operation.

If ENTER (ASCII code ODh) is pressed then this is a
command to the editor to begin sending text back to the
applications program. The details of how much text is sent
are determined by the flags and will be described below.
An internal editor flag is set to indicate that it is in
the process of sending text, and the first character is
returned to the applications program. When the
applications program makes another read character call the
internal flag 1is still set, so instead of entering the
editing loop, it simply returns the next character of the
requested text immediately. This continues until all the
required text has been sent at which time the internal flag
is cleared so the next read character call will again enter
the editing loop.

It is up to the applications program to recognize when
it has read all the characters to avoid re-starting a new
read operation. How to recognize this depends on the
setting of the editor flags and is described later.

Note that the editor flags are sampled once when the
first read character call is made and then not again until
all the text has been sent. Changing them in the meantime
will therefore have no effect on the read which is in
progress. If a write character call is mode while a read
is in progress then the internal flag is cleared so that
read will be aborted. This also applies if an special
function calls are made.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

(1

29-Nov-84 EX0S 2.0 - Editor

Device Specification Page 8

5.2 The Editor Read Flags in Detail

The assignment of bits in
= MSB bit-7
bit-6
bit=5
bit=-4
bit-3
bit-2
bit-1
LSB bit-0

LD ==0Q 0

the FLG_EDIT EXOS variable is:

= SEND NOW

- SEND ALL

- NO READ

- NO SOFT

- NO PROMPT
- AUTO ERA

- not used

- not used

5.2.1 The SEND NOW Flag (bit-7)

If Lnhis flag is set then the editor will start returning
text immediately, without reading from the keyboard at all.
If it is clear then the main editing loop will be entered
and no text will be returned until the user types ENTER.

In either case the amount of

text returned is the same and

depends on the setting of the other flags.

5.2.2 The SEND ALL Flag (bit-6)

This is the main flag which determines how much text is

sent, If it is clear then

tha paragraph containing the

cursor will be sent. If it is set then the whole editor

pbuffer will be sent.

In the first case the applications program will be sent
the characters of the paragraph one by one terminated with
a CR and then an LF. This CR-LF can be used by the
anplications program to determine when to stop reading

(beware if NO SOFT is clear!

- see below). The cursor will

be left on the first character of the next paragraph with a
new (empty) paragraph being created if that was the last

one.

If SEND ALL is set then the entire buffer will be sent.
This will include CR-LF sequences at least between each
paragraph (again see NO SOFT flag below) so this cannot be
used to indicate the end of the text. Instead, after the
last CR-LF has been sent (the last characters sent will

always be CR-LF), the next

character read will produce a

.EQOF (end of file) error. This error will only be received
for one character so the applications program must notice
it and stop reading. If another character was to be read
then this would start the whole reading process again from

the start of the buffer.

,"‘.

—= re> =

—

—

| [— [) [W—

o L s

L [L4&3i Lo

4 L.a

L.a .1 1t

-4

J

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 9

5.2.3 The NO READ Flag (bit-5)

If this flag is set then ENTER will not in fact return
any characters at all to the applications program. The
only way to get back to the applications program is thus to
press ESCAPE, Although no characters are returned, the
routine which selects which characters to send depending
on the flags, is still executed. Thus the cursor is moved
in the same way as if the text was returned. If SEND ALL
is clear then pressing ENTER will just move to the start of
the next paragraph, putting in a new line if it was at the
end of the buffer. This will make the editor behave rather
like a typewriter,

5.2.4 The NO SOFT Flag (bit-4)

This £lag controls the sending of soft carriage returns
and soft spaces. Soft carriage returns are those which
separate successive lines of a paragraph. Soft spaces are
those spaces which are inserted for justification, and also
the spaces before the left margin of a line.

If this flag is clear then soft spaces are returned as
normal ASCII spaces (20h) and soft carriage returns are
returned as normal CR-LF sequences. If the flag is set
then both of these are suppressed and no characters are
returned for them.

Beware that if NO SOFT and SEND ALL are both clear then
there is no way for the applications program to determine
whether a CR-LF which it receives is the end of the
paragraph, in which case it should stop reading, or simply
the seperator between two lines of the paragraph, in which
case it should continue. Therefore this combination of
flags should be avoided - at least one of them should
always be set.

5.2.5 The NO PROMPT Flag (bit-3)

This flag is normally clear. If it is set then the
cursor position when the read operation was started is
remembered. When it comes to returning text, if the cursor
has not been moved out of the original paragraph, or to
before the remembered position in the current paragraph,
and if SEND ALL is clear, the the current paragraph will be
sent back but starting from the character at the remembered
cursor position rather than the start.

If the cursor has been moved out of these bounds then

the whole paragraph will be returned as usual, or the whole
editor buffer if SEND ALL is set.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

\}-

29-Nov=-84 EX0S 2.0 - Editor Device Specification Page 10

This feature is wused by BASIC when doing an INPUT
command. It prints the prompt and the does an editor read
with this flag set. When ths paragraph is sent to BASIC
the prompt will not bs returned, just the response to it.

5.2.6 The AUTO ERA Flag (bit-2)

This flag is also normally clear. If it is set then,
if the wvery first character typ=d at the keyboard is a
nrinting character (as opposzd to an editing function or
cursor movement) then the current line will be cleared

b2 fore responding to the key. This is providezd mainly for
BASIC to allow commands such as RUN to bz 4yped on top
of an existing line after editing a program. It may. just

conceivably be of some use to other applications programs.

5.3 Typical Flag Combinations.

The wuse of these flags can be rather confusing so this
section discuses some examples of their use from IS-BASIC
and the built in word processor (WP). This covers most
useful combinations and certainly shows the use of each of
the flags.

5.3.1 BASIC reading a command line. Flags = 000101xx

When BASIC is reading a command line from the editor it
is expecting either an immediate mode command (such as RUN)
or a new line starting with a line number to by typed. In
either case it wants to read a single paragraph entered by
the user. This might be newly typed by him or it might be
a line which already exists in the editor buffer which he
simply moves the cursor to and re-enters.

Clearly BASIC wants to wait for the user to type ENTER
so the SEND NOW flag is clear. Only one paragraph, rather
than the whole buffer is wanted so SEND ALL is clear and
BASIC wants to actually be sent the text so NO READ is
clear. BASIC is not interested in the breaks between lines
in the paragraph (since one command line can over flow onto
several screen lines).so NO SOFT is set. NO PROMPT is
clear and AUTO ERA is set (as explained above).

——

— Y 3 e

) S

Lot | g |

-y

r

Y

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 1l

5.3.2 BASIC doing an input command. Flags = 000110xx

|

| - When BASIC is doing an input command it also wants to
read in a single paragraph so the SEND NOW, SEND ALL, NO
READ and NO SOFT flags are all set the same as for reading
a command. In this case however BASIC will write out a
prompt and wants to read in just the response +to that
prompt, rather than having the prompt at the start of the

1 paragraph which it receives. To do this it sets the NO
J PROMPT flag. The AUTO ERA flag is clear.

b

1

d

5.3.3 WP normal editing mode. Flags = 00lxx0xx

In normal editing mode the word processor wants to let
the user get on with his editing without data being sent to
“ the word processor. The SEND NOW flag is clear to allow
the user to do editing. The SEND ALL flag is clear and the
NO READ flag is set to ensure that no characters are
returned to the word processor when ENTER is pressed but
the cursor will be moved to the start of the next
paragraph. The NO SOFT and NO PROMPT flags are irrelevent
when NO READ is set, and the AUTO ERA flag is clear.

This will have the effect of allowing the user to move
J all over his document, pressing ENTER and using any of the
editing features. Only when ESCAPE is pressed will the
word processor applications program be alerted. In fact
the eight function keys have the ESC code as the first code
in their programmed string so the word processor gets
alerted when they are pressed as well.

L_a L_a LS 3

A4

‘
1
-
I 5.3.4 WP Printing a Document. Flags = 11000xxx
-l
When the word processor is asked to print a document it
q must read the whole of the editor's text buffer in order to
4 print it. Also it wants to get the data immediately rather
than waiting for the user to press ENTER. To achieve this
Y SEND NOW and SEND ALL are both set. NO READ is of course
\ clear or no text would be sent and NO SOFT is clear so that
- all spaces and soft carriage returns will be sent to ensure
that the formatting of the printed document is correct. NO
1 PROMPT is clear. AUTO ERA does not matter because SEND NOW
B is set so the user doesn't get a chance to press a key.
*q
'
—
1 J
-
1
|

. ET18/4 Copyright (C) 1984 Intelligent Software Limited -

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 12

6.

—_—

Editing Functions

The editor provides many editing and word processing
features. These are carried out in response to the user
typing an —appropriate key on the keyboard, or by the
same code being written from the applications program. The
following sections describe each of the editing functions
in some detail.

Some of the editing functions such as paragraph movement
and reforming paragraphs, require fairly complex internal
operations to be carried out. This often results in rather
strange behaviour of the screen display, involving
scrolling operations which might not be expected.

The four joystick directions and the INS, DEL and ERASE
keys each have three different functions which are
explained below. These functions are obtained by using the
key alone, or with either the SHIFT or CTRL keys. 1In fact
the CTRL function can also be obtained by using the ALT
key.

Cursor Movement (The Joystick)

Cursor movement is the most fundamental operation for a
full screen editor. On the Enterprise, cursor movement is
carried out with the joystick in conjunction with the SHIFT
and CTRL keys. The autorepeat on the Jjoystick allows
continuous cursor movement by just holding the joystick in
one of its eight possible positions.

The cursor can be moved anywhere on the video page but
cannot be moved off the page. If an attempt is made to
move it off the top or bottom of the page then the display
will scroll to bring more text from the buffer onto the
page. This scrolling will stop when the start or end of
the text is reached.

The cursor can be moved beyond the end of 1lines or
outside the margin settings without the text being
affected. However when a character is typed, extra spaces
will be put in to fill up to the cursor position and word
wrap may occur if the cursor is outside the margins.

Although only the four orthogonal directions of cursor
movement are provided by the editor, diagonal movement is
still possible, This is because if the joystick is moved
to one of the diagonal positions, the keyboard driver
autorepeat will return the appropriate two joystick codes
alternately so the editor will execute them alternately.
This 1is only useful for simple cursor movements, not for
the shifted and controlled movements.

’a L IR L LT e R Pt YARS Pl aVY e P Phica—a L i RS |

| s |

-

¥ N - N r— r

s |

[t B

i |

r

A |

..-a [} -

L4

(J (.2 L3 £33 3 -3 4 3 2 4 Lk La L. L g

-4

29-Ndv-84 EXOS 2.0 - Editor Device Specification Page 13

The possible cursor movements and their codes are:

Joystick Movement Key Code Function
uP 0BOh c Cursor up line
Shift-Up 0Blh Cursor up page
Ctrl-UpP 0B2h Cursor up paragraph
DOWN 0B4h Cursor down line
Shift-DOWN 0B5h Cursor down page
Ctrl-DOWN 0B6h Cursor down paragraph
LEFT 0B8h Cursor left character
Shift-LEFT 0BSh Cursor to start of line
Ctrl-LEFT 0BAh Cursor left word
RIGHT 0BCh Cursor right character
Shift-RIGHT 0BDh Cursor to end of line
Ctrl-RIGHT 0BEh Cursor right word

6.1.1 Left and Right by Character

The simple left and right movements move the cursor by
one character left and right. There is no wrap around from
one line to the next so if the cursor is at the extreme
left or right of the video page then attempting to move it
further will have no effect.

6.1.2 Start and End of Line

Moving the Jjoystick left or right with the SHIFT key
held down will move the cursor to the start or end cf the
current line respectively. In this context the start of
the line is the first actual character in the line,
discounting any spaces up to the left margin of that line.
The end of the line is the last actual character in the
line discounting any trailing spaces which are not
represented in the buffer (although there may be spaces
which are in the buffer).

6.1.3 Left and Right by Word

Joystick left or right with the CTRL key held down moves
the cursor left or right by a word. The exact definition
of a word is rather complex but is basically a string of
alphanumeric characters and a string of non-alphanumeric
characters in either order. Moving left or right by a word
does wrap around between lines.

Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EX0S 2.0 - Editor Device Specification Page 14

6.1.4 Up and Down by Line

The straightforward joystick up or down operation moves
the cursor— up or down by one line. The cursor always
remains in the same column position. If the cursor is on
the top or bottom line of tha video page then, assuming
that there are more lines in the buffer, the video page
will be scrolled appropriately to bring another line onto
the display. If the cursor is on the first or last line of
the text then nothing will happen.

6.1.5 Up and Down by Page

Moving the joystick up with the SHIFT key held down will
move the cursor up by a page. If the cursor is on the top
line of the video page then the page will be scrolled one
less lines than the height of the page so that the old top
line is now the bottom line and the rest of the video page
is new lines from the buffer. If there are insufficient
lines in the buffer then the scrolling will stop when the
first 1line of text is on the top line of the video page.
If the cursor was not at the top of the page then it is
moved to the top line of the page.

For moving down by a page the situation is analogous,
with the cursor being moved to the bottom line of the page
unless it is there already in wich case the page will be
scrolled up. In either case the cursor will be left on the
same column as it started on.

6.1.6 Up and Down by Paragraph

Moving up and down by paragraph {by wusing CTRL) is
rather different from other up and down movements. In
moving up by a paragraph the cursor will be put on the
first character of the current paragraph, unless it |is
already on the first character in which case it will be put
on the first character of the previous paragraph. The
video page will of course be scrolled appropriately to
ensure that the cursor remains on the screen.

Moving down by a paragraph always moves the cursor to
the start of the next paragraph unless it is already in the
last paragraph in which case it will be left at the end of
that paragraph.

»TIR /4 FAamttrimhte (Y 1004 Tréallimrarnt Cafimravra TimitaA

M ey

L |

.

ra

| - | —

L |

| e |

L4 L4 L_2

L4 L

Ld

- —d

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 15

6.2 Inserting and Insert Mode Control (The INS key)

The insert key has three. separate functions which are:

INS 0A8h - Insert a space
Shift-INS 0a9h - Insert a new line
Ctrl-INS 0AAh - Toggle insert/overwrite mode

6.2.1 Inserting Spaces and Lines

When the INS key is used on its own it simply inserts a
space character before the cursor position and leaves the
cursor on this space. It is useful for inserting a few
characters while in overwrite mode (see below). This 1is
done simply by inserting the correct number of spaces and
then over-typing them with the required characters.

When the INS key is used with the SHIFT key, the current
line will be split with a hard carriage return (end of
paragraph marker) at the cursor position. If the cursor is
at the start or end of a line then this will have the
effect of inserting a blank line.

6.2.2 Toggle Insert and Overwrite Mode

When the INS key is used with the CTRL key, it toggles
between insert and overwrite mode, the initial default
being overwrite mode. The current mode is indicated by the
cursor which is changed to a different character depending
on the mode. For overwrite mode it is character number l4
(a rectangular block) and for insert mode it is character
number 30 (a left pointing arrow).

In overwrite mode if a character is typed when there is
already a character at the cursor position then the old
character will be replaced by the new one. In insert mode
the new character will be inserted before the old character
and the old character along with the rest of the line will
be moved one character to the right.

Whether overwrite or insert mode is selected also

affects some details to do with word wrapping and splitting
lines in the middle of the buffer.

ET18/4 Copyright (C) 1984 Intelligent Software Limited JPTE

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 16

6.3 Deleting and Erasing (The DEL and ERASE keys)

The DEL and ERASE keys

have very similar functions, both

delete characters from the buffer. Basically the DEL key

goes rightwards while the

ERASE key goes leftwards. Each

key has three functions which correspond to the three types
of horizontal cursor movement:

DEL 0AOh
Shift-DEL 0Alh
Ctrl-DEL 0A2h
ERASE OA4h
Shift-ERASE 0ASh
Ctrl-ERASE OA6h

6.3.1 Deleting And Erasing

If wused without the
ERASE each delete a sing
the 1line left to fill
character under the curs
position, while ERASE de
the cursor and then mo
character.

Delete character right
Delete line right
Delete word right

Erase character left
Erase line left
Erase word left

Characters

SHIFT or CTRL keys then DEL and
le character and move the rest of
up the gap. DEL deletes the
or leaving the cursor in the same
letes the character to the left of
ves the cursor onto the previous

Both functions wrap around between lines and thus can be
used to join lines together. If the cursor is on the first

character of a line then
previous line. ' The line
as far as deletion goes.
the next one if it is at

6.3.2 Deleting and Erasing

When wused with SHIFT,
the start and end of the
already at the start or
be done, these functions

6.3.3 Deleting and Erasing

When DEL and ERASE
delste one word, using
cursor movement. The
deleting characters unti
These functions will j
purpose the line separato
deletes rightwards and ER

ERASE will join this line to the
separator counts as one character
DEL will join the current line to
the end of a line,

Lines

the ERASE and DEL keys delete to

current line respectively. If

end of the line then nothing will
do not join lines together.

Words

are used with the CTRL key they

the same definition of a word as
deletion is done by repeatedly
1 the end of the word is reached.
oin lines together and for this
r counts as a word. As usual DEL
ASE deletes leftwards.

——y

~— Yy -0]

|

[W1 -

L_a

| N—1

L2

|

L4 L.a

-4

N\

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 17

6.4

6.5

The TAB key

The TAB key (key code 09h) moves the cursor to the next
tab stop, or to the start of the next line if there are no
more tab stops on this line. The current TAB settings can
be seen on the ruler line if it is displayed.

In overwrite mode the curscr is simply moved to the next
tab stop. In insert mode the next tab stop is reached Dby
inserting spaces and moving any more text on the line to
the right. When moving to the start of a new line in
insert mode, spaces will be inserted up to the right margin
and then a new Lline will be inserted (not an end of

paragraph marker).

The Editing Function Keys

The more complex editing functions, and particularly the
word processor type functions are carried out by using the
eight function keys in conjunction with CTRL or ALT. This
gives a possible 16 editing functions although only 14 of
these are utilised because function key 8 is not used.

These 14 editing functions are listed here, along with
their key codes and each one is then described in more
detail in the following sections.

Ctrl-Fl 0F0Oh - Reform paragraph

Ctrl-F2 0Flh - Centre line

Ctrl-F3 0F2h - Toggle tab

Ctrl=-F4 0F3h - Set left margin

Ctrl-F5 0F4h - Release margins

Ctrl-Fé 0F5h - Move paragraph up

Ctrl-F7 0F6h - Change line colour
Alt-Fl 0F8h - Justify paragraph
Alt-F2 0F9h - Remove all tab stops
Alt-F3 0FARD = Toggle ruler line display
Alt-F4 0FBh - Set right margin
Alt=-F5 0FCh - Reset margins and tabs
Alt-F6 0FDh - Move paragraph down
Alt-F7 0FEh - Change paragraph colour

ET18/4 Copyright (C) 1984 Intelligent Software Limited

4

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 18

6.5.1 Reform and Justify Paragraph (Ctrl-Fl and Alt-F1l)

Reform and justify paragraph are very similar functions,
in fact Jjustify does exactly the same as reform but also
justifies. —Both operate on the paragraph containing the
cursor, and leave the cursor on the start of the next
paragraph. This means that pressing one of these keys
repeatedly will reform (or justify) each paragraph of a
document in turn, without need for using the joystick.

Reform paragraph moves to the start of the paragraph and
then walks through the paragraph to the end. As it goes it
adjusts the left margin of each line to be equal to the
current left margin, removes any soft spaces (left over
from previous justification) and word wraps each line to
the current right margin, Jjoining lines together where
possible.

The result is that the new paragraph appears exactly as
it would if all the characters of the paragraph were newly
typed in, so any untidy sections resulting from other
editing operations will be reformed.

Justify does exactly the same as reform but it also
inserts soft spaces into each line of the paragraph except

the last one, to ensure that each line finishes exactly on
the right margin.

€.5.2 Centre Line (Ctrl-F2)

Centre line is a fairly simple function which operates

on a single 1line, not a whole paragranh. It inserts
sufficient spaces before the line to centre it between the
current margins. Leading and trailing spaces are first

removed to ensure that they are not includzd in the
centring. The cursor is left on the ctar% of the line., If
the line 1is too long to fit betwecen the margin= than it
will be left so that it starts at the left margin oosition.

6.5.3 Toggle Ruler Line Display (Alt-F3)

The ruler line display is a red line which can be
displayed on the very top line of the video page. It
indicates where the left and right margins are set and also
the positions of any tab stops. '

I

Lt I sttt I ol O st N oo

" 3

-

| S | — [) | -] | — [—

| -1

4.4 L. 4

-4

-d

La L

l.a

L4

R

N~

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 19

The left margin is indicated by an »" and the right
margin by an "R". Tab stops are marked by a vertical bar
and other character positions between the margins are
indicated by dashes. Also if the margins are released (see
below) then an asterisk will be displayed in the extreme
right hand position of the ruler line.

This function key simply toggles the ruler line display
on and off, the default being off. All the facilities of
tab stops and margins can be used regardless of whether the
ruler line is displayed or not, but it can get confusing if
it is not. The built in word processor sets the ruler line
display on for the user.

6.5.4 Toggle and Clear Tabs (Ctrl-F3 and Alt-F2)

The toggle tab function sets a tab stop at the current
cursor column, or removes it if one was already set. Tab
stops can only be set between the current margin positions,
although when the margins are moved tab stops which are
outside them are remembered and restored when the margins
are moved back out. It is advisable to have the ruler line
displayed when using this function.

All tab stops can be removed by a single function key
press, including those which are outside the current margin
settings (and thus not visible on the ruler line). This is
useful to get rid of the standard tabs before setting up
your own set.

When an editor channel is opened, the tab stops are set
up by default to every eight character positions since this
corresponds to the standard setting for tabs on machines
with fixed tab stops.

6.5.5 Set Left and Right Margins (Ctrl=-F4 and Alt-F4)

The left and right margins define what portion of the
video page is used for entering and displaying text. When
an editor channel is opened the margins are initialised to
the widest possible setting. The user can set newWw margin
postions by putting the cursor on the desired column and
pressing the appropriate function key.

The right margin can be in any column up to two less
than the video page width. Thus for a 40 column display
(BASIC's default) the right margin can be any column up to
38. The left margin can be in any column from 1l up to one
less than the right margin column. The default margin
settings for BASIC's default channel are thus: left margin
at column 1, right margin at column 38.

~ ET18/4 Copyright (C) 1984 Tntelligent Software Limited

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 20

An attempt to set an illegal margin position will result
in both margins being reset to their default settings. The
applications program can use these codes to set margin
positions but there is also a special function call which
can be used to set the margins and also to read their
current settings. This is described later.

6.5.6 Release Margins (Ctrl-F5)

As mentioned before there is a margin release function.
This is in fact a toggle action, it releases margins on the
first oress and the re-enables them when it is pressed
again. When margins are rrlras»d the margins remain
displayed on the ruler line anu an asterisk is displayed on
the extreme right hand end.

When margins are released, all operrations which
normally use the margin settings us2 the drnfault settings
instead. Thus word wrapping will occur at the last-but-two
column rather than the right margin and characters may be
typed in outside the margins.

6.5.7 Reset Margins and Tabs (Alt-F5)

This function key resets the margin settings to their
default values and sets up the default positions of tab
stops (every eight columns). '

6.5.8 Move Paragraph Up and Down (Ctrl-F6 and Alt-F6)

These functions can be used toc move a paragraph up or
down. Each key press will move the paragraph up or down by
one line, wunless it is already at the start or end of the
buifer. To move a paragraph by more than one line this key
should be pressed repeatedly until the paragraph reaches
the desired position.

The paragraph to be moved is defined to start on the
current cursor line, and end at the next end of paragraph
marker. Thus to move a complete paragraph the cursor
should first be positioned on the first 1line of the
paragraph. This definition of a paragraph has to be used
to ensure that one paragraph can be moved through another
correctly.

Although not essential it is useful to use the "colour
paragraph" function before doing a series of moves up or
down. This highlights the paragraph to make it easy to see
what is going on, and also puts the cursor at the start so
that the whole paragraph will be moved.

-

b |

%

-~ - =

P

| S— | - -_3 ——— —

L.as

L4 L s Lo

L L4 ¢ .

L.4

L4 4 L _a

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 21

6.

5.9 Colour Line and Paragraph (Ctrl-F7 and Alt-F7)

These functions can be used to change the colour of the
text. The colour line function just affects the current
line whereas the colour paragraph function affects the
entire current paragraph, and has the side effect of moving
the cursor to the start of the paragraph ready for
paragraph moving.

Each change colour operation changes the colour to the
next one of four posible colour pairs, cycling back to the
first pair after the fourth. A colour pair specifies which
paper and ink palette colour the the video driver will use
for the text. The four colour pairs are (in order): (0,1),
(2,3), (4,5), (6,7), with (0,1) being the default (normally
green on black).

Note that if the editor is using a hardware text page
then colour pairs (4,5) and (6,7) will in fact appear as
pairs (0,1) and (2,3) since the video driver only supports
two colour pairs in this mode.

Special Punction Calls
Setting Margin Positions

The margin positions can be set by the user or the
applications program by using a function key. However a
more general way for the applications program to set the
margin positions is provided as a special function call.
The parameters for this call are:

Channel number (1l...255)

@EMARG (=24) (Special function code)
New right margin column

New left margin column

Parameters:

Status
Right margin column
E = Left margin column

Returns:

A
B
D
E
A
D

The column numbers can be from 1 up to the width of the
video page, with the usual restrictions on valid margin
settings. There are two special values which can be given
for the new left and right margin parameters., If either of
them is OFFh then the current cursor column will be used
for that margin. If either of them is zero then that
margin setting will be unchanged. Thus the current margin
settings can be read without affecting them, simply by
setting both D and E to zero.

BT18/4 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 22

7.2

Loading and Saving Document Files

Two special function calls are provided for loading and
saving document files. The format of saved documents fits
in with the standard EXOS file module forma: which |is
deseribed in the EXOS kernel specification. The module
type for editor document files is $SEDIT (=8) and the
module header contains no other information.

The simplest of the two functions is saving. The call
must specify a channel number down which the document is to
o2 saved and this channel must be opened before making the
call. The editor will write a suitable module header
followed by the data of the document. It does not write
out an end of file header at the end, since the application
program may want to create a multi-module file.

The details of this special function call are:

Parameters: A = Editor channel number (1l...255)
B = Channel number to write to (1l...255)

Returns: A Status

Loading 1is slightly more complex. Before making the
special function call, the file to load from must have been
opened, and a file header with type $SEDIT must have been
read in. The eéditor is then called, giving the channel
number to load from. It first clears all the text out of
the editor buffer and then loads the new document in from
the file. It loads line by line and checks that each line
is wvalid before going on to the next. If it finds an
invalid 1line or the buffer becomes full then it stops
loading and returns an error (.EDINV or .EDBUF). All
previous 1lines in the buffer will be wvalid. The cursor
will be left at the start of the document,

The parameters for the loading special function call
are:

Parameters: A
B

Editor channel number (1l...255)
Channel number to load from (l...255)

Status

Returns: A

A saved document contains the characters of the text and
also information about paragraph structure, the left margin
vosition for each line, and the colour of each line. Thus
if a document is saved and loaded into an editor channel
with the same sized buffer and video page, then it will re-
load exactly as it was before being saved.

=%

- .

| -] | - -—a | P

| —_—

L.d . 5 4.3 L.4

L

L_a

-

t.d €2 63 L vy

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 23

Information about editor options and so on is not saved
with the file so any tab settings, current margin settings
and so on will have to be set up again when the file is
loaded. .

A document can be loaded into a different sized editor
channel but may have to have some lines adjusted if their
left margin setting is invalid. Also it may not all fit
into the buffer if the new buffer is smaller.

Error Handling

The only error which can be generated inside the editor
during normal operation (apart from loading and saving
documents, opening channels, illegal special function
calls, and unknown escape sequences) is .VCWRS which is
returned if an invalid cursor position is given in the
cursor positioning escape sequence.

However, since the editor is communicating with a video
page and a keyboard channel, it can get errors from these
channels. Generally an error from one of these channels
means that the channel is misbehaving in some way. For
example if someone has re-directed the editor's video
channel to a different device, or even closed it then the
editor will get errors from its video channel.

If an error does come from one of these channels then
the editor returns either .EKEY or .EVID error code to the
applications program. It also remembers that this error
occurred and whenever it is next called, with any EXOS
call, it checks the channel (by writing a null to the video
or reading status from the keyboard) to see if it is
basically working. If it is working then it clears the
error flag and carries on normally. If it is not working
then it returns the appropriate error code (.EKEY or .EVID)
to the user without carrying out the function call.

This procedure ensures that the applications program can
tell when the editor is having trouble with its secondary
channels and attempt to put things right. This is how
BASIC manages to recover if the editor's video channel is
closed. BASIC discovers this and re-opens it again.

Another feature is that if a NULL (ASCII code 0) is
wr;tten to the editor, instead of just being ignored, it is
written directly to the video page, which will ignore it.
This provides a way to 'poke' the editor to check if its
video channel is still there, without having any effect on
the editor's data.

ET18/4 Copyright (C) 1984 Intelligent Software Limited

29-Nov-84 EXOS 2.0 - Editor Device Specification Page 24

9. Quick Reference Summary

9.1

EXOS Calls

OPEN/CREATE CHANNEL - Treated identically. Supports
multiple channels. Device name "EDITOR:".
Filename and unit number ignored. EXO0S
variables VID_EDIT, KEY_EDIT, BUF_EDIT must
be set before open.

CLOSE/DESTROY CHANNEL - Treated identically.

READ CHARACTER/BLOCK - Returns characters from buffer
after allowing user to do editing. Details
controlled by FLG_EDIT EXOS variable.

WRITE CHARACTER/BLOCK = Printing characters put in buffer
and displayed. Responds to some control
codes and ESC=, Some codes above 0AOh do
editing functions.

READ STATUS - Returns C=0 if a read character call
would return character immediately without
allowing user a chance to edit. Returns C=l
otherwise, or C=0FFh if just finished a SEND
ALL.

SET STATUS - Not supported.

SPECIAL FUNCTION - @@MARG = 24 Set and read margins.

@ECHELD = 25 Load document file.
@RCHSV = 26 Save document file.
EX0S Variables

VID_EDIT - Channel number of video page.

KEY_EDIT - Channel number of keyboard channel.

BUF_EDIT - Buffer size in multiples of 256 bytes.

FLG_EDIT - Flags to control reading from editor.
b7 - SEND NOW
b6 - SEND ALL
b5 = NO READ
b4 - NO SOFT
b3 = NO PROMPT
b2 - AUTO ERA

b0 & bl - Not used.

++++++++++ END OF DOCUMENT ++++++++++

e

=y

-y

(*\

(o |

-

9

~—

==

~

Y

27-Nov-84 EX0OS 2.0 - Video Driver Specification Page 1

1. Introduction

The video driver handles the display of any number of
"video pages" in various different display modes, making
use of most of the facilities of the NICK chip.

The display is managed in terms of video "pages", with
one page corresponding to each EXOS channel which is open
to the video driver. Before a channel is opened to the
video driver the user must specify various parameters, such
as a video mode and page size, by setting EXOS variables.
A channel can then be opened to device "VIDEO:", If a
filename or wunit number is specified then it will be
ignored. The video driver will work out how much RAM it
needs for this video page and obtain that much RAM from
EX0S, 1including enough for the various variables needed.
The only limit on the number of video pages is the amount
of available memory. Video pages can only use the internal
64k of video RAM.

Once the channel has been set up in this way, the |user
can read characters from, or write them to, the videc page.
The data read or written will have a different meaning for
pages of different modes, particularly control characters
and escape seguences.

At this stage the video page will not be visible on the
screen. A special function call is required to cause a
video page to be actually displayed on the screen. It 1is
only at this time that the appropriate line-parameter
blocks are set up and the text/graphics will appear. It is
possible to display any vertical section of a video page at
any vertical position on the screen, covering up anything
which was displayed on those scan lines before. If the
page width 1is less than the full screen width then the
margins will be adjusted to display the page in the middle
of the screen.

Text pages provide displaying of characters from a 128
character font which is initialised to a standard ASCII
character set, but any characters may be re-defined by the
user. Also text pages provide various control functions
including cursor positioning, scrolling of any section of
the page and automatic scrolling.

There are various different graphics modes providing a
choice of resolution, number of colours and memory usage.
All of the graphics modes support drawing of lines and
ellipses in a variety of plotting modes and 1line styles
(dotted lines etc.). Characters can be displayed using the
same font as text pages. There is a sophisticated £flood
filling algorithm which will £ill any arbitrary shapes
subject to stack limitations.

—

-

ET11/10 Copyright (C) 1984 Intelligent Software Limited ﬁ?

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 2

1.1 Co-ordinate Systems

The co-ordinate system wused in specifying graphic
positions is standardised so that giving the same commands
to two pages of different resolutions or colour modes will
produce a pattern of the same size on the screen. A
graphics page of full screen size will be 972 logical
pixeis high and 1344 pixels wide. This corresponds to
twice the maximum horizontal and four times the vertical
resolution available. All besam positions are specified in
these co-ordinates, and depending on the colour mode the
actual position will have to be an approximation. The
origin for this co-ordinate system is the bottom left
corner of the graphics page.

Text pages do not use this co-ordinate system, they use
a system based on character positions so the top left
corner is (1,1) and the top right corner (of a full screen
size 1low resolution text page) is (1,42). Note that the
origin for text co-ordinates is the top left of the page.

Attribute graphics mode pages actually keep a beam
position in graphics co-ordinates and a separate cursor
position in text co-ordinates. The use of these is
explained later.

Basic Control of Video Pages

As mentioned before, each video page is a separate
channel. When a'channel is opened to the video driver this
implies that another video page is to be created. The
video driver looks at EXOS variables which specify the page
size, page mode and colour mode. These variables must be
set up by the user before opening a video channel. From
these wvariables the video driver determines how much video
RAM it needs and obtains that much with an EX0S function
call f"MAllocate channel buffer").

The video driver maintains th~ lin~ narameter table in a
fixed place in its absolute d2ri:2 HAM area. The line
parameter table always consists of 28 line parameter blocks
of 9 scan lines each for the display arza and va-ious other
ones to generate the frame sync and bordnr=, The first
line parameter block 1is reserved for the status line
display which is a fixed area of RAM. Th= other 27 line
parameter blocks can display any part of any page, so

display is always in vertical units of 9 pixels. All 28
line pearameter blocks are initially set up to b2 blank (ie
all border colour), The variable LP_POINTER in the EXOS

variable area points to the start of the 1lins rarameter
table,

L. | -

Yy Ty 1y ey

~9y 3 Ty

7

A i S DR (e e | WO W] [W—1 — [S—

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 3

2.1

2.2

2.3

Display Modes

IThe display mode 1is specified by an EXOS wvariable
MODE_VID the allowed values of which are:

0 =~ Hardware text mode (up to 42 chars/line).
1 - High resolution pixel graphics.
2 - Software text mode (up to 84 chars/line).
5 - Low resolution pixel graphics.
15 - Attribute graphics.

Any other values will produce an error (.VMODE) when an
attempt is made to open a channel. The three graphics
modes correspond to the PIXEL, LPIXEL and ATTRIBUTE modes
of the NICK chip (see separate NICK chip specification).

Colour Modes

As well as the display mode, each video page is of a
particular colour mode. The colour mode is specified by an
EXOS wvariable called COLR_VID. The allowed values for this
variable are:

- Two colour mode
Four colour mode
Sixteen colour mode
256 colour mode

wMpHOo
1

Any other wvalues will be reduced modulo 4 and so no
errors are produced. For text modes it is only useful to
use two colour mode, unless the characters in the font are
re-defined for doing some sort of block graphics. Also
attribute mode must always be in two colour mode, althouch
sixteen colours will actually be available on the page.

Page Size

Two EXOS variables, X_SIZ_VID any Y_SIZ VID, define the
size of the page to be created. The vertical size |is
specified in character rows. It can be any value from 1
to 255 although only 27 rows can be displayed on the screen
at one time. The horizontal size is specified in low
resolution character widths, and can be any number from 1
to 42. Invalid values will produce an error (.VSIZE) when
a channel is opened.

ET11/10 Copyright (C) 1984 Intelligent Softwara Limited

I

-

27-Kov-84 EX0S 2.0 - Video Driver Specification Page 4

2.4

A special function call is provided to return the size
of a video page. It returns the number of lines and the
number of characters per line. The number of lines will be
the same as the Y_SIZ_VID EXOS variable when the channel
was opened. The characters per line value returned is the
actual number of characters per line so in the case of a
software-text mode it will be double the value in X_SIZ_VID
when the channel was opened.

The parameters for this call are:

Parameters: = Channel number (1l...255)
= @ESIZE (=2) (Special function code)
Returns: Status

Number of characters per row
Number of rows
Mode of page (0, 1, 2, 5 or 15)

OnNnwyrp Wp

o won

Display Control

Video pages are not actually displayed on the screen
until the user explicitly requests this. This reguest is
done by a special function call to the channel. The
parameters for this call are:

Parameters: A = Channel number (1l...255)
B = @@DISP (=1) (Special function code)
C = 1lst row in page to display (l...size)
D = Number of rows to display (1...27)
E = row on screen where first row
should appear (1l...27).
Returns: A - Status

The three row parameters are all given in character row
units since the area of screen specified must be a whole
number of line parameter blocks. The displayed page will
replace anything which was displayed on that part of the
screen before. If the channel is subsequently closed then
any part of the screen which was displaying that channel
will be made border colour (by bringing the margins in the
relevant line parameter blocks right in).

A value of 1 for the position on screen parameter (given
in register E) refers to the line on the screen directly
below the status line. °~ Thus it is not possible to overlay
the status line since zero will not be accepted.

If a value of zero is given for the position in the page
parameter (register C) then the portion of the screen
defined by the other two parameters will be blanked (ie.
made entirely border colour).

[l | —Y -~ 3

b |

=3 " e-93 e—9

r-

.

L W [

| S

| S— Lzl] | — L

Ay, ki2xs) koo

w

~ S

27-Nov-84 EX0S 2.0 - Video Driver Specification Page 5

If any of the parameters for the function call are
invalid for any reason then an error (.VDISP) is returned.

Video Modes and RAM Usage

When a channel 1is opened the wvideo driver obtains
sufficient RAM from EXOS to support the page. This
includes a certain amount for internal wvariables (128
bytes), an overhead of two bytes for each line of the page,
and enough RAM for the display memory which will vary in
size depending on the display mode and page size. Note
that for any given display mode and page size, all of the
four possible colour modes will use the same amount of RAaM
since they trade off resolution for number of colours
without affecting the memory regquired.

There is a special function call provided which returns
the actual address of the display RAM for that page. In
fact two addresses are returned because some modes use two
different areas of memory. The exact meaning of the
addresses for each mode is described below in the section
on the appropriate mode. The addresses which are returned
are the addresses as seen by the NICK chip. Thus an
address in the range 0000h...3FFFh corresponds to RAM
segment OFCh, 4000h...7FFFh corresponds to segment OFDh and
so on for segments O0FEh and O0FFh.

Parameters: A = Channel number (l...255)

B = @Q@ADDR (=3) (Special function code)
Returns: A = Status

BC = Main display RAM address

DE = Secondary display RAM address

Note that the display RAM for a video channel <can be
moved Dby EXOS and so the addressas returned by this call
will not always remain the same. The operations which can
cause channel RAM areas to movz are explained in the EXOS
Kernel specification. The most important ones are opening
and closing of other video channels and linking in |user
devices or resident system extensions. If any operations
of this type have been performed then this special function
call will have to be repeated to obtain the new addresses.

In tha sections below, wheore HEIGHT and WIDTH are
referred to in specifying RAM reagquirements, these values
are the actual wvalues from Y _SIZ _VID and X s1Z2_VID
respactively. Thus for example a full screen size software
text page has a width of 42, even though it actually has 84
characters across.

ET11/10 Copyricht (C) 1984 Inctelligent Software Limited

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 6

The RAM requirements given below are the amount of
channel RMM which the video driver will askx for. In
addition to this each page will reqguire 2 channel
descriptor (of 16 bytes) which is allocated by EX0S.

Hardware Text Mode (Mode 0)

In hardware text mode, one byte of RAM is allocated for
each character position on the page. These bytes contain
the character codes for the characters displayed on the
page and the NICK chip itself translates these inteo
character shapes using the font, when the display is
generated. If the top bit of the character code in the
display RAM 1is set then this character will be displayed
using palette colours 2 and 3 rather than 0 and 1.

Initially the ASCII map starts with the top left
character of the page ard continues across the first line
followed by the second 1line and so on down the page.
However once any scrolling operations have been performed
the ordering of lines on the page will be different so the
first byte of the ASCII map will be the first character of
a line but not necessarily the top line. The lines can end
up in any arbitrary order and even clearing the page will
not re-order them,

The RAM usage and address parameters for a page of this
mode are:

DE = BC = Start. of ASCII character map

Total RAM = 128 + 2*HEIGHT + WIDTH*HEIGHT

Software Text Mode (Mode 2) t

Software text mode maintains an ASCII copy of the page
which corresponds to the memory used in hardware text mode.
This is one byte for each character on the page. In
addition to this it has a complete bit map of the page.
The wvideo driver itself builds up the character shapes in
this bit map from the character font. This bit map is used
by the NICK chip to generate the display, the ASCII map is
only used internally by the video driver sofiware.

—] ey

""“ ""‘ ""‘ L | L |

Y

~7 ™

L |

. |

v,
|
.-
)

)
4
]
* 3
J
1
-
h]
i
1
4
]
a
.
ol

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 7

The bit map initially corresponds directly with what |is
seen on the screen (assuming the video page is displayed),
with one bit corresponding to each pixel. The first byte
therefore corresponds to the first eight pixels on the top
line of the page, which is the top line of the first
character. The next byte corresponds to the teop line of
the next character and so on until the end of the first row
of characters. The next byte will correspond to the second
scan line of the first character. This continues for nine
scan lines to complete the first row of characters.
Subsequent rows of characters are built up in the same way.

The same comments about scrolling apply to software text
pages as to hardware text. Scrolling operations can re-
order the lines of a page in any arbitrary order. The
ASCII map and the bit map are always re-ordered in the same
way.

When the video driver is putting characters from the
font onto a software text page it masks out the top and
bottom bits of each byte and inserts colour information
into these bits in the bit map. The values of these two
bits control which palette colours are used to display this
byte (all 9 bytes in a character will be the same colour).
The meaning of these bits is:

bit-0 bit-7 palette colours used

and 1
and 3
and 5
and 7

HHOO
HokHOoO
[= 0 - S]

The RAM requirement and address parameters for a
software text page are:

BC = Address of start of bit map (top scan line of top
left character). .
DE = Address of start of ASCII map (top left character).

Total RAM = 128 + 2*HEIGHT + 20*HEIGHT*WIDTH

3.3 Pixel Graphics Modes (Modes 1 and 5)

The two pixel graphics modes are high resolution (mode
1) and low resolution (mode 5). The only difference
between these modes is the amount of RAM they wuse, and
therefore the resolution. A pixel graphics page has an
area of RAM which is a straightforward bit map of the
screen. The first byte corresponds to the top left of the
page, the next byte to the second byte on the top scan line
and so on to the end of the first scan line. This is then
repeated for the next scan line and so on until the bottom
of the page.

ET11/10 Copyright (C) 1984 Tntelligent Software Limited

27-Nov-%84 EXOS 2.0 - Video Driver Specification Page 8

The mapping of these bytes into pixels depends on the
colour mode and is described in the separate NICK .chip
specification.

In low resolution pixel mode the full screen width is 42
bytes and in high resolution pixel mode it is 84 Dbytes.
High resolution pixel mode thus uses twice the amount of
RAM to cover the same screen area as low resolution pixel
mode .

The address parameters and RAM usage for the two pixel
graphics modes are:

BC
DE

Address of top left byte of display RAM
Value is un-defined

Total RAM (low resolution)
Total RAM (high resolution)

Attribute Graphics Mode (Mode 15)

An attribute graphics page requires two areas of RAM of
egual size. The first of these (the pixel data area) is a
bit map of the video page which corresponds exactly to the
bit map for a two colour low resolution pixel graphics
page, with each byte defining eight pixels. The second RAM
area 1is the attribute data. Each byte in the attribute
data area defines two palette colours in the range .- 0...15,
the INK attribute and the PAPER attribute. The eight bits
in the corresponding pixel data byte define which of the
two colurs each of the eight pixels covered by this byte
will be.

The format of a byte in the attribute data area is:

b7:b6:b5:b4 - PAPER colour, used if a bit in pixel
data byte is clear.
b3:b2:bl:b0 - INK colour, used if bit in pixel data

byte is set.

The address parameters and RAM requirements for an
attribute graphics page are:

BC
DE

Address of start of pixel data area
Address of start of attribute data area

Total RAM = 128 + 2*HEIGHT + 18*WIDTH*HEIGHT

128 + 2*HEIGHT + 9*WIDTH*HEIGHI
128 + 2*HEIGHT + 1B*WIDTH*HEIGHT

—-

[. TR .|

[|

L, | 9 ~—1 M

[atae

~—

[— [——

L4

| W—)

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 9

4. Character Output

The screen driver supports both the single character
write and the block write EXOS function calls. A Dblock
writs is exactly equivalent to writing all the characters
individually, oxcept that it is rather faster as it avoids
the overhzad of going through EXOS for every character.

4.1 Printing Characters

All character codes above 31 will be treated as printing
charactars and will be put at the appropriate place on the
video page. All modes have some sort of "cursor" which
moves when a character is printed but the details wvary
between different modes.

The bit maps for characters are stored in a fixed
character font which is initialised to an ASCII character
set. Each character 1is eight bits wide and nine bytes
deep, including the space between characters and between
lines. The user can re-define any of these characters by
an escape sequence as specified below.

Character codes in the range 32 to 127 will be
displayed as the correct character number from the font.
Characters in the range 128 to 255 will be displayed as
characters 0 to 127 from the font. Thus writing character
160 (128+32) to a video page will have exactly the same
effect as writing character 32. However writing character
159 (128+31) will display character number 31 from the font
on the page but writing character 31 will do nothing
because it will be interpreted as a control code (this
particular control code is ignored).

4.1.1 Text Mode Character Printing

Text pages (modes 0 and 2) maintain a single text cursor
which 1s in text co-ordinates. The printing character is
displayed at this position and the cursor moved to the next
character slot, At the end of a 1line the cursor
automatically moves to the start of the next line, with
automatic scrolling if it is at the bottom of the screen
(this automatic scrolling can be disabled).

 —

e d

L

ET11/10

ADQUIPMENT BV
INDUSTRIEWEG 10-12
pcsTzUS 311
3440 AH WCERDEN
TEL 03430 -18341

Copyright (C) 1984 Intelligent £:ftware Limited

(o
La2

27-Nov

4.

4.

-84 EX0S 2.0 - Video Driver Specification Page 10

1.2 Pixel Graphics Mode Character Printing

Pixel graphics pages maintain a beam pointer in graphics
co-ordinates. The printing character is displayedat this
beam position and the beam moved to the next character
position, moving to the start of the next line if at the
end of a line. Characters can be displayed at any pixel
position, not 3just on character boundaries. There is no
scrolling. If the beam is too near the bottom of the page
to fit the whole character on then it will not display
anything.

Characters are displayed 1in the <current ink colour
regardless of whether the beam is on or off. The character
is displayed by reading bits out of the font and if the bit
is set then a pixel is plotted in the current ink colour
using the current line mode. If the bit is clear then the
corresponding pixel will be left unchanged. A character
will therefore overlay rather than replace anything which
is already on the page.

The characters will be the correct shape in any colour
mode but the aspect ratio will vary with different modes.
To improve legibility the character height is doubled for
sixteen and 256 colour mode.

1.3 Attribute Graphics Mode Character Printing

An attribute graphics page maintains a text cursor in
text co-ordinates and a separate graphics beam position in
graphics co-ordinates. Characters are printed at the text
cursor position and so will always be in exXact character
positions. At the end of a line the text cursor will go on
to the start of the next line and at the end of the page it
will go back to the top left of the page - there 1is no
scrolling.

How the character is displayed depends on the current
value of the attribute flags byte for this page. This is a
byte which can be set by an escape sequence and is
described in more detail later on. It basically controls
what sections of the attribute and pixel data will be
affected by writing characters or plotting graphics.

Control Codes and Escape Sequences.

Character in the range 0 to 31 are control characters
anéd are not printed. Some of these are interpreted by
video pages, depending on the mode. Any which are not
understood are simply ignored. A special control code is
ESCAPE (ASCII 1Bh) which is used to start an escape
sequznce for carrying out various functions.

[t 1

L, 1

y—3 v -3 -

-

-y L e

L_siien |

-

v
|
[
! -
i
[]
1
i
3
‘
.
)
1
]
d
‘
1
-
1
|
-l
1
J
1
1
Voo)

27-Nov-84

complex of

4.2.1 Codes

Below
sequences

“Z (lAh)

“J (0Ah)

“M (0Dn)

= (1lEh)

escK

escC
ascc

escl<n>
escP<n>

esc=<y><{x>

EXOS 2.0 - Video Driver Specification Page 11

is a list of the control codes and escape
interpreted by the various modes. The more
these are explained in the next section.

Interpreted by Any Video Page

Clear entire page and home cursor/beam.

Line-feed. Move cursor down to next line
{scrolls if at bottom of screen in text mode

and scroll is enabled.)

Carriage return. Returns cursor to start of
current line

Cursor/beam home. (ASCII RS)
Dafine character (see below)

et all palette colours \, see below for
S22t one palette colour / parameters.

Set ink colour to <n> \ See below for details
Set paper colour to <n> / in different mocdes

- Set cursor position (ses below}

4.2.2 Codes Interpreted by Text Pages Only

g ;

“H
*T
“K
v

(19h)

(08h)
(0%h)
(0Bh)
(léh)

esc?

esc.<n>

escM<{n>

escO
esco

escS
escs

escU<m><n>
escD<{m><n>

ET11/10

- Clear to end of line. Does not move cursor.
- Cursor left., (ASCII BS) ‘

- Cursor right. (ASCII TAB)

- Cursor up. (ASCII VT)

= Cursor down. (ASCII SY¥N)

- Read cursor position. Also supported in
attribute mode. (see below)

- Set cursor character to character code <n>.

Set cursor to palette colour <n>

- Set cursor display on.
- Set cursor display off,

- Set automatic scroll on
- Set automatic scroll off

Scroll up lines (m=-2Uh) to (n=-20h) m <=
Scroll down lines (m-=20h) to (n-20h) m <=

ja =

Copyright (C) 1984 Intelligent Software Limited

27-Nov-84 EXO0S 2.0 - Video Driver Specification Page 12

4.2.3 Codes Interpreted by Graphics Pages Only

escA<xx><yy> - Position beam at co-ordinates (xx,yy) where
= xX & yy are each 16-bit hex numbers
specified low byte first.

escR<xx><yy> - Relative beam movement by amount (xx,yy).

esc@ - Read beam position. (see below)

escS ' - Set beam on.

escs - Set beam off.

esc.<n> - Set beam to line style <n> - see below.

escM<n> - Set beam to line mode <n> - see below.

esca<n> - Set attribute flags byte to <n>. Only
allowed in attribute mode (see below).

escF - Graphics £fill - see below.

escE - Plot ellipse - see below.

5. Details of Escape Segquences

5.1 Position Cursor

The escape sequence to position the cursor works in all
modes. In text mode it simply moves the cursor. In
attribute graphics mode it moves the text cursor but leaves
the graphics beam pointer alone. In pixel graphics modes
it moves the graphics beam pointer to the appropriate text
co-ordinates, so it will be on a character boundary.

The format of the escape seguence is:
esc=L{y><{x>

This sets the cursor to row (y-20h) and column (x-20h). If
either <x> or <y> is 20h (thus setting row or column zero)
then that co-ordinate will remain un-changed. This allows
just the row or column to be set.

Define Character

This escape sequence allows the user to re-dcfine one of
the 256 characters. Although it is sent to a specific
channel, it actually affects the global character font and
will thus affect other chanrnls. Characters already
éisplayed on a page will only b~ affected feor hardware text
pages. In other modes only subsequently written characters
will o2 affected. The syntax of the cscap~ zranence is:

b, |

L, |

L |

e 1 —y -y [|

L e |

A
!
|
L
]
1
[
)
‘
]
1
‘
!
]
9
a4

-
-
|
o
L]
-
1
-
1
i
el
L]
-
P
-4
] i

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 13

5.3

5.

4

escK<n><rl><r2><ri><rd><r5><r6><r7><r8><r9>

where: <n> is the character number (0...255)
<rl>...<r9> are the bytes for the nine rows of the
character. <rl> is the top row.

Note: In high resolution text mode, only the middle six
bits of the character bytes will actually be
displayed as the other two are masked out and
used to control the colour selection.

Palette Colours

Each video page has a palette of eight colours
associated with it which is initialised to a useful set of
colours when the channel is opened. There is an escape
sequence with which the user can change all these colours.
the format of this is:

escC<er><e><e><e><e><c><c><e>

Each <c> is a byte specifying one of the palette colours
and there must always be eight of them.

There 1is another.escape seguence which allows just one
palette colour to be changed. The format of this is:

esccin><c>

Where <n> is the palette colour number 0...7 and <c> is the
new value for this palatte colour. ,

When new palette colours are selected any line puarameter
blocks which correspond to this video page will be updated
so the2 colours on the screen will changa.

Inx and Puaper Colours

The user may specify a palette colour for both the ink
and paper colour with separate cscape saquances. For all
video modes the i1nk colour defaults to one and th2 paper
colour to zero.

For pixel graphics pages tha allowed 1ink and paper
colours depend on the colour mode, so it is 0 or 1 in two
colour mode, 0...3 in four colour mods, 0...15 in sixtean
colour mode and 0...255 in 256 colour mode. Pixels are
always plotted in the current ink colour. The paper colour
of the display is only changed when the page is cleared.

ET11/10 Copyright (C) 1984 Intelligent Software Limited

27-Nov-84 EXOS 2.0 - Video Driver Specification Pa

5.6

For attribute graphics mode the ink and paper co
can oe in the range 0...15 and they control what co
are put into the attribute bytes. See also the secti
the attribute flags byte below which determines whethe
attribute and pixel data is actually updated.

In four, sixteen or 256 colour text modes the ink
paper colours have no useful effect because the pa
colours for each pixel are determined directly from bi
the character font. In fact they do have some intera

with the displayed colours and it is best to leave them set

to their default values,. These modes are only usefu
the characters have been redefined to provide some sor
block graphics.

In two colour hardware text mode the 1ink and
colours are always (0,1) or (2,3). If the ink or pap
changed then the other one is changed to correspond.

In two colour software text mode four colour pairs are
available, (1,0), (2,3), (4,5) and (6,7). Characters are
always printed in the current colour pair.

Graphics Line Style

For a graphics page the line-style may be set with an
appropriate escape segquence, The line style affects 1line
drawing and ellipse drawing but not character plotting or
filling. The values for the line style byte are:

1 - Solid line (default))
2..14 - Various types of broken and dotted lines.
Graphics Line Mode

An aoscape seguence specifies th2 line rod~ byte which
has the following meanings:

0 - PUT plotting (default)
1 = OR plotting

2 - AND plotting

3 - XOR plotting

I'or pixel graphics _ pages when plotting a pixel the
curr2nt ink colour is combined with the old colour of the
pixel according to the operation selected by the line mode

and then storzd.

ge 14

lours
lours
on on
r the

and
lette
ts in
ction

1 if
t of

paper
er is

- N

bt | -— —

L |

—y 3 3

3

3

[e

hoa

b_a L..a

-

| o

 —

27-Nov-84 EX0OS 2.0 - Video Driver Specification Page 15

5.7

Attribute Flags Byte

The attribute flags byte is only supported for attribute
graphics pages. It consists of eight separate flags, four
for plotting graphics (points, lines, ellipses and filling)
and four for plotting characters. The basic operation
which is affected is that of plotting a pixel.

When plotting a pixel in attribute mode there are three
items which can be affected. There is the bit in the pixel
data byte which corresponds to this pixel, and there are
the two colours (ink and paper) in the attribute byte which
corresponds to this pixel data byte. The attribute flags
byte contains a flag for each of these three items which
controls whether or not it is affected whan a pixel |is
plotted. If the ink attribute is to be affected then it
will be set to the current ink colour. If the paper
attribute is to be affected then it will be set to the
current paper colour.

The pixel data is rather more complex. Assuming that
the pixel data is to be affected then there is another bit
in the attribute flags byte which controls what is done
with the pixel data, in conjunction with the current line
mode. For plotting characters, if this bit is set then the
character will be complemented before being plotted. For
plotting graphics, if the corresponding bit is set then a
zero will be put into the pixel bit instead of the usual
one. When plotting graphics (but not characters) the bit
is not in fact put directly into the pixel byte but is
combined with the current value of the bit according to the
current line mode. This means for example that exclusive
or plotting will still work.

The top four bits of the attribute flags byte “control
character plotting and the bottom four control graphics
plotting. For all bits the 'normal' state is zero which
results in all attributes and pixel data being affected,
qu plotting to be in the normal sense. The assignement of

its is:

bit=7 Affect paper attributes in character plotting
bit-6 Affect ink attributes in character plotting
bit=-5 Affect pixel dtaa in character plotting

bit-4 set to complement character before plotting

bit-3 Affect paper attributes in graphics plotting
bit-2 Affect ink attributes in graphics plotting

bit-1 Affect pixel data in graphics plotting

bit-0 set to do graphics plotting in 0's instead of l's

Notz that when Filling bit-1 of the attribute byte i3
assumzd to be clzar regardless of its actual state. This
is necessary because if the pixel data were not arffected
then tha £ill algorithm would never terminate.

ET11/10 Copyright (C) 1984 Intelligent Softw = Limited

27-Nov-84 EX0S 2.0 - Video Driver Specification Page 16

5.

5.8

Graphics Fill - Paint

The graphics fill command is a simple escape sequence
which does a fill from the current beam position. It fills
in the currént ink colour up to any boundary which is not
the same colour as the current beam position. It handles
concave shapes and tests for reaching the edge of the video
page. It may fail to fill the entire shape if it runs out
of stack but this should only happen with extremely complex
shapes since it does garbage collection on the stack when
it gets full.

Graphics Ellipse Drawing

The ellipse drawing routine takes two 1l6-bit parameters
(low byte first) specifying the x and y radii. To draw a
circle these should be tha same valuc. The centre of the

ellipse will be at the current beam position. The format
of the escape sequence is:

escE<xx><yy>

Character Input

6.1

Simple character input

When a character 1is read from the video driver the
result depends on the mode. In text modes the ASCII code
of the character at the cursor position will be returned,
without moving the cursor. In grachics mode the palette
colour of the pixel at the current beam position will be
returned. This will be 0 or 1 in two colour mode, 0...3 in
four colour mode, 1...15 in sixteen colour or attribute
modes and 0...255 in 256 colour mode.

Reading Cursor Position

The escape seguence: esc? is supported in text
and attribute graphics modes. It triggers the video
channel to return the current cursor co-ordinates as the
next two characters réad from this channel. The co-
ordinates will be returned in the same way as they are

specified for cursor positioning, ie. with a 20h offset
added on.

=9

Latih, |

hj

-

-—y -y

1

r—y =4 73

-

3

—3

27-Nov-84 EXOS 2.0 - Video Driver Specification Page 17

6.3 Reading beam position

This is supported by graphics pages only (pixel and
attribute modes). The escape seguence: esc@ will
trigger the channel to return the current graphics beam
position as the next four bytes read from the video page.
The co-ordinates are returned in the same format as they
would be specified for an absolute beam position.

7. Miscellaneous

7.1 Status Line

| —" | —1

|

h_a

[—

el

R

As mentioned earlier there is a special status line
display which is outide the normal page/channel structure.
The first line parameter block is reserved for this status
line and will never be used to display any video page. The
two byte variable LP_POINTER which is at a fixed address in
the EXOS variable area contains the address of the start of
this 1line parameter block. This is used by the cassette
driver to modify the palette colours of the status line to
provide the cassette level meter display. It could also be
used by other programs to manipulate the status line
display.

An EXOS variable (ST_FLAG) is provided which will cause
the status line to be displayed if it is zero and removed
from the display if it is non-zero (that region of the
screen will be border colour). This is implemented by the
video driver examining ST_FLAG every interrupt and setting
the margins in the reserved line parameter, block
apporopriately.

There 1is a two byte pointer (ST_POINTER) defined at a
fixed address in EXOS variable area wnich contains the
address of the 40 byte area of RAM which is the status
line. This pointer will point to 2%2-80 page-2 and the RAM
will be at this address in segment OFFh. The user or
external devices can access the status line by finding its
address from ST_POINTER. Built in devices can access it
directly by using the public sysmbol ST_LINE which is the
start of the status line RAM (in Z-80 page=-2 segment O0FFh).

ET11/10 Copyright (C) 1984 Intelligent Software Limited

(G

27-Nov-84 EX0S 2.0 - Video Driver Specification Page 18

8.

7.2

Border and Fixed Bias Colours

Two EXOS variables (BORD_VID and BIAS_VID) are provided
to control the hardware border and fixed colour bias
registers, The values in these variables are written out
to the NICK chip on every video interrupt, Th~ border
colour is written directly to the border rrgistosr. The top
5 bits of tha fixed bias variable are written to the bottom
5 bits of the fixed bias register, and the top bit of the
register 1is set according to the EROS wvariable MUTE_SND
since it is used to silence the internal speaker.

Resetting the Character Font

As mentioned before the video driver maintains a single
128 character font which is used for all text pages and
also for displaying characters on graphics pages. This is
initially set wup at cold start time, but is not re-
initialised at subsequent device initialisations. Thus if
any characters in the font are re-defined then these re-
definitions will survive a warm reset or a transfer of
control to a new applications program.

The font can be reset to its initial state by making a
special function call to any video channel. This will set
all 128 characters back to their initial shapes. Note that
this will affect all characters on a hardware text page
instantly but will only affect subsequently printed
characters on a software text or graphics page. The
parameters for this call are:

a

Parameters: A = Channel number (1l...255)
B = @E@FONT (=4) (Special function code)
Returns: A = Status
Quick Reference Summary
8.1 EXOS calls.
OPEN/CREATE CHANNEL - Treated identically. Supports
multiple channels. Device name "VIDEO:".

Filename and unit number ignored. EXOS variables
MODE_VID, COLR_VID, X_SIZ_VID, Y_SIZ_VID must be
set before open.

CLOSE/DESTROY CHANNEL - Treated identically.

READ CHARACTER /BLOCK - Returns cursor character or pixel
colour. Can be wused to read cursor/beam
position.

(‘\

-9

1

L.

| S——

L

| S_—

| QN

L_a

b .d s s .4 b_s L_a k-2

| —1 L.J

-

A

~J

27-No

v-84 EX0S 2.0 - Video Driver Specification Page 19
WRITE CHARACTER/BLOCK - Displays printing characters.
Many control codes and escape seguances
interpreted to provide special features.
READ STATUS - Always returns C=0.
SET STATUS - Not supported.
SPECIAL FUNCTION =~ R@@DISP = 1 Display page on screen
@@SIZE = 2 Return mode & size of page
@GADDR = 3 Return video RAM address
@@FONT = 4 Reset character font
EX0S Variables
MODE_VID - Video mode \
COIR_VID - Colour mode \ Must be set up before
X_SIZ_VID - Characters/line (l1...42) / a channel is opened
Y SIZ_VID - Lines in page /
ST_FLAG - Zero to display status line.
BORD_VID =~ Overall screen border colour
BIAS VID =~ Colour bias for palette colours 8 to 15.

++++++++++ END OF DOCUMENT ++++++++++

ADQUIPMENT BV
INDUSTRIZWEG 10-12
PC3TEIUS 311
3440 AH V/OERDEN
TCL. C24C80-1834)

ET11/10 Copyri~ht (C) 1984 Intelligent Software Limited

29-Nov-84 THE NICK CHIP Page 1

PROGRAMMING THE NICK CHIP

2322222233222 32 2 2 2 8 2 8 8 8

In contrast to the majority of video display devices which
allow the user various modes for the whole display, NICK allows
many different modes in the same display frame.

Principal features of NICK are:-

* Mixed mode displays
User definable characters from fonts of 64, 128 and 256
* 8-bit colour output (256 colours)
* 2,4,16, and 256 colours per line chosen from 256
* Maximum resolution (using interlace) 672 * 512
_ * Cell based graphics, bitmaé and characters
* Characters any height from 1 to 256 scanlines
* Choice of 256 border colours
* User defined screen width and height
* External colour input (unlimited sprites or TV camera)
* Rfficient use of RAM (can work with < 1K of RAM) -
* 4 colour-pairs in 84 column tet mode
* Special use of bits to increase colour options

* Pointer-based memory mapping, for flexibility and speed

ET1/1 Copyright (C) 1984 Intelligent Software Ltd

"-_.L)

i"’

29-Nov-84 THE NICK CHIP Page 2

CONTROL REGISTERS

o g k9 ok g ok ok e ok ok ok ok

Input-output

addresses

0B0H to 08FH are reserved for NICK

registers although only 080H to 083H are used at present. These

recisters are write-only.

080H

081H

082H

083H

/FIXBIAS
a7

(d6,d5)

(d4..4a0)

/BOR DER
(d7..40)

/LPL
(d7..40)

(d3..d0)

10

VC1l output used to kill external colour

(PRIOR1,PRIORO) external colour
priority,working in conjunction
with an external 4-bit (16 colour-
value) input on ECO-EC3. y

ECO-EC3 select corresponding palette
colour whenever the display is
active and /EXTC is low.

The external colour on ECO-EC3 selects
the corresponding palette colour if
JEXTC is 1low and the internal
display 1is generating a palette
colour in the range COL8-COL15.

The external colour on ECO-EC3 selects
the corresponding palette colour if
JEXTC is low and the internal
display is generating a palette
colour in the range COLB-COL1l5 OR
the external colour is in the
range COLO-COL7 (EC3 low).

The external colour on ECO-EC3 selects
the corresponding palette colour if
/EXTC is' low and the internal
display 1is generating a palette
colour in the range COL8-COL1lS5 OR
the external colour is in the
ranges COL0-COL3 or COL8 - COLll
(EC2 low).

colour bias for palette colours 8-15.

8 bit border colour
all

¥
(all ..a4) of pointer to line parameter
table in video RAM, The index into an
entry of 16 bytes, (a3..al) is
generated by the hardware.

/(load line parameter base) normally 1
/(clock in line parameter base)
(al5..al2) or pointer to the line
parameter table in video RAM.

M

Y

Bt

™ M Y o

|

r

A

R T o

9

3 .3 i w4 v

s

L

-
—b

[¢

€3 3 i3

[9 |

1 (.

3 €I €1 3 2 a3 ¢t

29-Nov-84 THE NICK CHIP Page 3

The video display is controlled by values loaded into the
video RAM segments (up to 64K at the top of the 4M space) by the
280. Once this 'line parameter table' has been loaded in and the
line parameter base register has been loaded the display requires
no more action on the part of the 280.

The visible display is split up into ‘'video mode lines'.
These 'modelines' are made up of 1 to 256 scanlines. (A scanline
is one scan of the electron beam across the CRT and takes about
64 microseconds.)

The following 16 registers are loaded from the line parameter
table before each modeline:

vl iBE scanlines in this modeline (two's complement)
MB the MODEBYTE (dafines video display mode)
LM left display margin etc.

RM right margin etc. _ '
LD1L (a7..a0) of line data pointer LDl
LD1H (a8..al5) of line data pointer LDl
LD2L (a7..a0) of line data pointer LD2
LD2H (a8..al5) of line data pointer LD2
COLO 8 bit value of palette colour £0
COoLl " £l ‘
CoL2 " £2
COL3 . £3
COL4 " £4
COLS * £5
COL6 " £6
COL7 " £7
1€?ﬁ; g s A“;‘-“- - —————
R A A
T

ET1/1 Copyright (C) 1984 Intelligent Software Ltd

Lo, Ve |
-

of

29-Nov-84 THE NICK CHIP Page 4

BUS ACTIVITY FOR THE VARIOUS MODES
Kk kkhkkkhkkhk Ak kA kkk ko k ko

The possible video modes are:

VSYNC no border colour and use margin information to control
positioning of the vertical sync pulse. This gives
considerable interlace flexibility.

PIXEL use information pointed to by LDl as a bit mapped
display.
ATTR use information pointed to by LD2 as a 2-C bitmap

display and information pointed to be LDl as cell-
based graphics attributes (ie: to define paper and
ink colours in the cell).

CH256 use information pointed to by LDl as indices of
characters pointed to by LD2. These characters can
be any number of lines deep (up to 256).
NB: offsets in the font pointer define which line of
the character to start on.

CH128 As above but assumes a font of 128 characters.

CH64 As above but assumes a font of 64 characters.

LPIXEL As for piXel mode but with half the horizontal
resolution.

Note that all these modes may be mixed on the same screen and
that one has the choice of 2-C, 4-C, 16-C and 256-C colour modes
for the PIXEL, LPIXEL, CH256, CH128 and CH64 modes. Also note
the special interpretation of certain bits of display data
described below.

'T1/1 Canuriaht (MY 1084 TrtallinAnt CAftuara T+A

)

Y 1 Y Y Y 3

~

5

M T Y

LA |

rkKy ™y

ey

r-y

r

- hd e ed d fd e

e oed o e e e e ed ed bemd beed

] o

29-Nov-84 THE NICK CHIP Page 5

pDetails of bus use during a memory cycle in the various modes:

PIXEL /VDCl /VDC2
Address LD1(15....0) LD1(15....0)
Data into BUF1(7....0) BUF2(7....0)

BUF1 and BUF2 are loaded sequentially into the shift register
and clocked out MSB first, ie. both are display bytes. The line
data pointer LDl is incremented twice in each memory cycle.
Screen data is fetched from memory and the LDl counter is
incremented only in the active part of the display, ie. between
the 1left and right margins of a scanline. The scanline count
loaded at the beginning of the PIXEL modeline determines how many
scanlines in this scanline.

h /VDC1 /VDC2
(ess LD1(15....0) LD2(15....0)
a into BUF1(7....0) BUF2(7....0)

Cell based (parallel attribute) graphics. LDl is used as a
pointer to the «colour array (paper and ink colours) and LD2
points .at 2-C pixel data, ie. the display bytes. LD2 is
incremented once every memory cycle while the display is active
and keeps incrementing up for all scanlines in the modeline. LD1
restarts from the same address for each scanline so attribute
data in BUFl applies to cells which are 8 bits wide and have a
depth of the number of scanlines in the modeline.

The character modes involve indirection through the character
font. A different font may be define for each modeline and
line by 1line vertical scrolling is obtained by offsetting the
original index.

1

) 36 /vDCl /VDC2
‘ess LD1(15....0) LD2(7....0), BUFl(7....0)
--ca into BUF1(7....0) BUF2(7....0)

LDl is reloaded at the start of each scanline and acts as a
pointer into a section of RAM containing the indices of the
characters to be displayed. It is incremented once in each
memory cycle. LD2 is a pointer into the character font to be
used and is incremented at the start of each scanline (it points
to a row of a character in the font). Thus the font consists of
256 bytes defining the first row of each character and then
another 256 bytes for the next row of each character ete. If the
characters are 9 lines deep this requires 2304 bytes of character

font (256*9). The data in BUF2 is loaded into the shift
register.

ET1/1 Copyright (C) 1984 Intelligent Software Ltd

(S

[

29-Nov-84 THE NICK CHIP page 6
CcH128 /VDC1 /VDC2

address LD1(15....0) LD2(8....0) BUF1(6....0)

pata into BUF1(7....0) BUF2(7....0)

This is pbasically the samé as the 256 character font mode but
note that the font for &4 9 line deep characters only requires
1152 bytes of memory. i

CH164 /VDCl /VDC2
address LDl(lE....O) 1D2(9....0) BUFllS....O]
Data into BUF1(7....0) BUF2(7....0)

This is basically the same as the 256 character font mode but
note that the font for 64 9 line deep characters only requires
576 bytes of memory .

LP IXEL /VDCl /VDC2
address LD1(15....0) LD1(15....0)
pata into BUF1(7....0) BUF2(7....0)

This is much the same as the PIXEL mode except that the LDl
pointer is only incremented once in each memory cycle and the
BUF2 data is not used. This gives half the horizontal resolution
of the PIXEL mode .

VSYNC

No use is made 'of the information loaded from memory. 1t is
equivalent to the LPIXEL mode.

r

\ — e

¢ 1 91 1 L

a

|

29-Nov-84 THE NICK CHIP Page 7

THE LINE PARAMETER REGISTERS
Rhkkk kAR A RRRRRRAK RN AR RRNRARRS

sC This is a two's complemented count of the number
of scanlines in the modeline, ie: OFFH for
one scanline in modeline.

(J 3 L2 3

MB d7 If set this takes the VIRQ interrupt line low for
the duration of the modeline. In conjunction
with the DAVE chip this causes an interrupt to be

-
—

i generated at the beginning of the modeline.

H

(4 (d6,d5) Defines the colour mode:

-y 00 2-C Two colour mode. If a bit in the byte

9| of display data is 1 a pixel of palezte
colour € 1 1is output and if 0 a pixel of

-1 palette colour £0. The bits are output to

< the screen in the following order:

. :+ d7 : d6 : d5 : d4 : d3 : d2 : dl : d0 :

ul‘_) e ————— ———m e —————

j 01 4-C Pour colour mede. Pairs of bits in the
byte of display data define the colour of the

" pixel displayed. 00 for palette colour £0,

| 01 for palette colour £1, 10 for palette

- colour £2, and 11 for palette colour £3. The

L pixels are displayed in the following order:-

5 U SO R S S S S

:(d7,d3) : (d6,d2) : (d45,dl) : (d4,d0):

m emeemeeemmmmm e

1

-

= 10 16-C Sixteen colour mode. Groups of 4 bits

1 in the byte of display date define the colour

- of the pixel displayed. 0000 for palette
colour £0 up to 1111 for palette colour £15.

"‘" The pixels are displayed in the <following

- order:-

"’I ----------------------------

o : (47,43,d5,d1) : (d6,d2,d4,40) :

r"q

—

-~

|

ot

Jzi

N ET1l/1 Copyriaht (C) 1984 Tnrelligent Sofrware Ltd

29-Nov-84

d4

(d3,42,41)

do

THE

NICK CHIP Page 8

Note that palette colours £0 to £7 have
8-bit values loaded from the line parameter
table at the start of each scanline but that
palette colours £8 to £15 have 8-bit values

defined as
palette
palette

palette
wherz (f4
of the FIX

11 256-C Two
In this
defines th

The actual

RED =

GREEN = [b
BLUE = [b
(Note that
and blue a
to the pal

=0 for /VRES.

follows: -

Colouf EB = (fqnyrfszlgforofo!O)
colour £9 = (£4,£3,£2,£1,£0,0,0,1)
"colour£ls = (f£4,£3,£2,£1,£0,1,1,1)

,£3,f2,f1,f0) are the 1low 5 bits
BIAS register.

hundred and fifty six colour mode.
mode thz byte of display data
e colour of a single display pixel.

colour produced is as follows:-

[b01*(4/7) + [b31*(2/7) + [b61*(1/7)

11*(4/7) + [b41*(2/7) + [b71*(1/7)
21*%(2/3) + [b51*(1/3)

this specification of rod, green

lso occurs when allocating a colour
ette.)

The VRES mode the LDl and LD2

data pointers are reload=d at the start of each

scanline' and

so the same display pattern is

repeated for each scanline of the modeline.

defines the vid

000
001
010
011
100
101
110
111

eo display mode (see above):

VSYNC mode

PIXEL mode

ATTR mode

CH256 mode

CH128 mode

CH64 mode

unused at present
LPIXEL mode

If 1 this forces a reload of the line parameter

base register.
to occur at the

This will normally be programmed
end of each video frame.

N

Ty TTY FOY OFCCOY Y

\
€Yy ry ™)

\

N

)

Y

r— ™

Ty

rTy

)

=3

] 29-Nov-84
j M a7
j "
]
)
j de
" i
]
]
J (d5...4d)
./
]
)
-
:.a RM 47
]
de
)
]
]
W~
].
. ET1/1

THE NICK CHIP Page 9

=] for MSBALT, ie: if the top bit of the display
byte is 1 this causes palette colours £2 and €3
to be selected instead of €0 and £1 in the 2-C
display mode. If the top bit is 0 palette colours
€0 and £1 are used as usual. In both cases
the top bit seen by the shift register 1is
forced to 0. This mode is wuseful in simulating
an 80 coloumn VDU in the PIXEL mode. Since the
msb or LHS of any character is 0 for character
spacing it can be wused to highlight areas of
text.

=1 for LSBALT ie: if the bottom bit of the
display byte is 1 this causes palette colours
£4 and €5 to be selected instead of

£0 and £1 in the 2-C display mode.
If the top bit is 0 palette
colours £0 and £l are wused as usual. In

both cases the top bit seen by the shift
register 1is forced to 0. This mode is useful

in simulating an 80 c¢olumn VDU in
the PIXEL mode, ' Since the 1lsb or
RHS of any charater is 0 for

character spacing it can be wused to highlight
areas of text.

define the left hand margin of the active display.
In practice this value will not be below 10 for
the left hand edge of the @RT. The display
changes from being border colour at the left hand
margin and the display data counters start being
incremented. The 1left hand margin defines the
start of the vertical sync pulse in the VSYNC
video mode.

ALTIND1 If a 2-C character mode is salected this
will cause characters with an index above 080H to
have a paper of palette colour £2 and an ink of
palette colour £€3 instead of £0 and £1.

ALTINDO If a 2-C character mode is selected this
will cause characters which have their next to
most significant bit set to swap palette colours
as follows:=-

£0 - > £4
£l - > £5
£2 - > £6
£3 - > g7

Jo

Coovright (C) 1984 Intelliaent Sof'ware Ltd

29-Nov-84

LD1L

"D1iH

LD2L

LDZH

COLO

COLl

CoL2
COL3
COL4
COL5
COL6

COL7

...d0)

THE NICK CHIP Page 10

These bits define the right hand side of the
active display. The maximum valuz is normally 54
for the right hand edge of the CRT. The display
returns to the border colour at the right hand
margin and the line data pointers are not
incremented wuntil the next left hand margin. In
the VSYNC video mode the right hand marqin defines
the end of the vertical sync pulse.

This 8-bit wvalue defines the starting value of
(a7..a0) of the line data pointer LDl.

This 8-bit wvalue defines the starting value of
(a8..al5) of the line data pointer LDI.

LDl is wused as a pointer to the n2xt byte of
display data in the PIXEL and LPIXEL modes. In
the CH256, CH128 and CH64 modes it is the index of

a character in the character font. In the ATTR
mode it points to attribute information.

This 8-bit wvalue defines the starting wvalue of
(a7..a0) of the line data pointer LD2.

This 8-bit wvalue defines the starting value of
(a8..al5) of the line data pointer LD2.

LD2 1is used as a pointer for pixel information in
the ATTR display mode and as a pointer to the

character font in the CG256, CH128 and CH64 modes.
It is not used in the PIXEL and LPIXEL modes.

Palette colour £0. This is the paper colour in
2C modes though note the exceptions above.

Palette colour £1. This is the ink colour in
2C modes though note the exceptions above.

Palette colour £2 (Alternate paper)
Palette colour £3 (Alternate ink)
Palette colour £4

Palette colour £5

Palette colour £6

Palette colour £7

% g de g de o e s o e e o e o e o o o ok o e ok END OF mCUMENT koo kok ok

r—1 /3 ¥R

-

1

8)

—
1

[P |

r—

B B g

-
H

r-+1 I r . e

e | — |] ‘_,.J [pp—

U—

11-Sep-84 (MRL) EXOS - Sound Driver Specification page 1

1. Introduction

J The sound device driver provides all the sound control
in the machine. 1t provides an interface which allows the
user to manipulate most features of the sound chip.

1t only allows one EX0S channel to pe open to it at a
time. The sound chip has four sound sources -~ three tone
channels and a noise channel. The sound driver maintains
a gqueue of sounds for each of these sound channels. Each
sound in the queue will be played in turn when the one
pefore it is finished. These sound queues are of a fixed
maximum size of 25 sounds in each gueue and will be held in
the channel RAM.

As well as the sound queues;, the sound device maintains

a list of envelopes each with an envelope number 0...254.

‘, Each sound in the gqueues refers to a specific one of the
envelopes O to the nnull" envelopée 255. When the sound 1is
actually played the specified envelope controls changes in
pitch and left and right amplitude of 'the sound throughout
its duration. The storage for envelopes is in the sound
device's channel RAM and the size of it must be specified
with an EXOS variable be fore opening the channel.

o
2. General Device Interface

The sound device is write only = it will not accept any
read function calls. printing characters are ignored. All
the sound functions are controlled py various control codes
and escape sequences. 1t should accept write character and
write block function calls in the obvious way -

1t will have an interrupt routine which is entered 50
times per second (once every TV frame). This scans the
sound gqueues and processes any sounds which are waiting or
are currently be ing played. Each 20ms period is called 2
'PICK' and all timing is in terms of ticks.

There are 0O special function calls for the sound
driver. The following EX0S calls produce a FUNCTION NOT
SUPPORTED error:

READ CHARACTER
READ BLOCK
SET/RETWRN CHANNEL STATUS
SPECIAL FUNCTION
N

cai waoa Trerallident Software rimited

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 2

An EXOS variable BUF_SND is used to specify how much
storage is reguired in channel RAM for envelopes and must
be set up before a channel to the sound driver is opened.
It is specified in phases and the sound driver will obtain
enough RAM to guarantee that the user can define envelopes
with a total of the reguested number of phases. Thus if
the user requests 20 phases then he will be able to define
one envelope with 20 phases in it or 20 envelopes each of
one phase. Because of the overhead associated with each
envelope, the former case takes up rather less RAM than the
latter, so if 20 phases are requested then probably more
than that number can be defined before storage will be
exhausted since most envelopes have more than one phase.
The number of phases requested can be 2...255.

3. Envelopes

3.1

General Description of Envelopes

An envelope consists of a series of between 1 and 40
phases each of which will be executed in turn when the
envelope is used. Each phase is defined by four numbers:

PD
cp
CL Change value for left amplitude (8 bits).
CR - Change value for right amplitude (8 bits).

Duration of this phase in ticks (16 bits).

The change values are signed numbers to allow a change
in either direction, up or down in pitch and louder or
softer in amplitude. The pitch change can be any signed
16-bit number -32768...32767. The amplitude change values
must be in the range -63...+63. They specify the total
change in the appropriate parameter which is reguired
during this phase. The specified change in pitch or
amplitude will be spread linearly over the specified number
of ticks as will be described later.

One particular phase of the envelope may be
distinguished as the start of the release phase. The
effect of this will be described in detail 1later but
basically controls the dying away of the sound after the
note has really finished.

Format of Envelope Definition

Envelopes are defined by an escape sequence sent to the
sound channel:

esc E <en> <ep> <er> [<cp> <cl> <cr> <pd>]*

<en> = Envelope number 0...254 (8 bits).

~

Change value for pitch in 1/512 semitones (16 bits).

-— - - - -y

—

-9

-1 ¥-x *—3 Fry =3 3 r-q 9

-

t_» L.a

h-a

L_a

s 8.4 L.

3

2

11-Sep-84 (MRL) EXOS - Sound Driver Specification

Page 3

<ep> = Total number of phases in envelope l...40 (8 bits).

<er> = Number of phases before release (8 bits). If
no release phase is required then this should be
OFFh which will result in the sound finishing as
soon as the sound duration is expired.

<cp> = Pitch change (16 bits) \ For each phase
as described

¢cl> = Left amp. change (8 bits) \ above, repeated
up to 40

<cr> = Right amp. change (8 bits) s times (as
specified by EP)

<pd> = Phase duration (16 bits) /

When an envelope definition is received, 1if an existing
definition of that envelope exists then it is deleted. The
new definition is then added to the list. If there |is
insufficient space to store it then an error code will be
returned. If this happens then the old definition of that
envelope will be lost. '

Sound Production

To actually produce a sound an escape Sequence must be
sent which specifies the sound. The format of this is:

esc S <env> <p> <vl> <vr> <sty> <ch> <d> <f>
The meaning of each field is:

<env> - (8 bit) Envelope to use for this sound. An
envelope number of 255 will produce a "beep "
type sound which is of constant amplitude
and pitch for the duration of the sound.

<p> = (16 bit) sStarting pitch of sound in 1/512
semitones. Only exact guartertones will
necessarily be musically correct. The others
are generated by linear interpolation.
Ignored for noise channel.

<vl>
<vr>

(8 bit) Overall left amplitude. (0...255)
(8 bit) Overall right amplitude. (0...255)

ET12/7 Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 4

<sty> - (8 bit) Sound style byte. For the noise
channel, this byte is put into the noise
control register for the duration of the
- sound. For a tone channel the top four bits
are put into the four sound control bits in
the sound frequency register for that
channel, they thus control filtering,
distortion and ring modulation. Zero gives
a pure tone or white noise.

<ch> = (8 bit) Source for this sound. 0, 1 or 2
for the appropriate tone channel and 3 for
the noise channel.

<d> - (16 bit) Duration of this sound in ticks.
<f> - (8 bit) Flags byte.
b0...bl = SYNC count for this sound. See

later section on synchronisation.
b2...b6 = Not used, should be zero.
b7 - Set to force over-ride of any
sound in queuve for this channel.
Clear to wait its turn.

When a sound is received it is added to the end of the
appropriate queue (killing the queue first if bit-7 of the
flags byte is set). If the queue is full then there are
two courses of action which depend on the state of the EXO0OS
variable WAIT_SND. 1f this is zero then the sound driver
will just wait until there is space in the sound gueue,
testing the stop key to allow it to be interrupted. If
this EXOS variable is non-zero then it will return an error
code .SQFUL.

Processing of Sounds

5.1 Pitch and Amplitude Control

If the envelope specified in a sound definition is not
defined then the appropriate channel will be silent for the
duration of the sound. The same thing applies if the
enve lope definition vanishes during the course of
processing the sound.

The production of a gsound under control of an envelope
requires various current values to be kept. There will be
the current pitch value which is initialised to the pitch
value given in the sound specification. There will also be
left and right current amplitude wvalues, which are
initialised to zero at the start of the sound.

-9 3~9 e~q w-3 "9 g~y o- -4 w3y e-3 w9y

r—3

r— ey

- %

L] e -

b

| S | S 1

|

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 5

With these values initialised, processing of the sound
can begin, Each phase of the envelope in turn is executed,
each one lasting for the number of ticks specified in the
envelope specification. At each tick, the current pitch
and amplitude values are modified so that the change value
in the envelope specification is spread linearly over the
duration of the phase. The result at the end of each phase
is that the signed change value has been added to the
current value at the start of the phase, for each of the
three parameters.

In the case of amplitude parameters the value is limited
to the range 0 to 63. If an attempt is made by an envelope
to make the amplitude go above 63 then the actual amplitude
will Jjust stick at 63. For pitch values there is no
checking, the value will simply wrap around from 65535 to 0
and vice versa.

At each tick the current values of pitch and amplitude
must be output to the sound chip itself. The details of
how the register values are calculated are different for
pitch and amplitude values. ’

For amplitude, the current left amplitude (6 bits) must
be multiplied by the overall left amplitude specified in
the sound definition (8 bits). The resulting 14 bit number
is the required left amplitude. The top six bits of this
value are be written to the appropriate DAVE register.
The right amplitude is of course treated similarly.

The 16-bit pitch value must go through a logarithmic

- conversion process to produce in a counter value to go into

ET12/7

the appropriate DAVE registers. The top byte of the pitch
defines a quater-tone number from 0 to 255 (range 9-10
octaves). The counter value for this quarter-tone is found
from a lookup table, with appropriate shifting depending on
the octave. The top four bits of the lower byte oI the
pitch wvalue are used to linearly interpolate between the
selected counter value and the next one up. This gives a
resolution of approximately 1/64 tone which 1is certainly
adequate to produce smooth pitch changes.

Time control

While all the above processing of phases is going on,
another counter is timing the length of the note itself.
This is a 16 bit counter initialised to the sound Jduration
specified in the sound definition, and decremented at each
tick. If the end of the envelope is reached before this
counter reaches zero then the sound will be silenced and
remain silent until the counter does reach zero.

Copyright (C) 1984 Intelligent Software Limited

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 6

If the sound duration counter reaches zero before the
envelope has finished then two things happen. Firstly if
the release phase of the envelope has not yet been reached
then control skips to the start of the release phase.
Secondly a flag is set to allow this sound to be over-
ridden by another sound which is waiting in the queue or
appears in the gueue at a later time.

Synchronisation

The flags byte in the sound definition has two fields
defined, the OVER-RIDE bit and the SYNC count. If the
over-ride bit is set then the relevant sound queue is
flushed before putting the new sound in, so it will be
ready to start immediately. If it is clear then the new
sound is just added to the gueue to wait its turn.

The SYNC count is a two bit count which is ignored when
the sound is put in the gueue. The sound driver maintains
an interral SYNC COUNT which is normally zero. When a
sound reaches the head of a gueue and is thus ready to be
played, the SYNC byte in the sound is examined in
conjunction with the internal SYNC counter.

If the SYNC count in the sound is zero then the sound is
just started in the normal way with no synchronisation. 1If
the SYNC count in the sound is non-zero then the sound is
held up and the internal SYNC counter is examined. If it
is zerc then the SYNC counter from the sound is copied into
it., If it is non-zero then it is decremented by one and if
it goes to zero then all held ap sounds are released
simultaneously.

The effect of all this is that if three =ound arec to
played simultaneously then they should b~ guoued up on
their appropriate channels each with a SYNC count of two
(one less than the number of sounds). The sound driver
will then ensure that they are started simultaneously even
if one of them gets to the head of its gqueue slightly
earlier. This facility can thus b2 used to iron out slight
timing differences in multi voice tunes.

=

bo £

{ i |

r~—y

S

| N—)

| —

| —

|

L5 L4s bL_2 &4 L. L2 L4 L

i

4 L

1

J

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 7

6‘

7.

Other Control Functicns

There are various other functions which the sound device
provides which are listed here.

~2 - Flush all sound gqueues.

Esc Z <n> - Plush an individual sound queue.

n=20, 1 or 2 for tone channel, 3 for noise channel.

“X - Flush all of envelope storage

“G - Cause a PING, see terminal bell below.

Interaction With Other Devices

7.1

7.2

Other Devices Accessing Sound Registers

Ideally the sound device would have exclusive use of all
the sound registers. Unfortunately the cassette device has
to fiddle with some of them for output and timing purposes.
The sound driver sets up all sixteen sound registers on
each interrupt so it will recover very gquickly if its
registers are corrupted.

Keyboard Click

The keyboard device has to click when a key is pressed.
This event must be triggered from the keyboard device's
interrupt routine and so cannot be done with an EXOS «call.
It is achieved by the keyboard device calling a globally
defined routine XEYCLICK in the sound driver which uses
tone channel zero to produce a click without interfering
with any other sound which may be on this channel. The key
click sound takes about 1/100 second and the routine does
not return until it has finished.

ET12/7 Copyright (C) 1984 Intelligent Software Limited

M

11-Sep-84 (MRL) EXOS - Sound Driver Specification Page 8

[

5.3 Terminal Bell

When the screen driver gets an ASCII code 7 (BELL) it is

) supposed to _make an appropriate sound. It does this

calling a globally defined routine called BEEP in the sound

driver. This uses tone channel 2 to make a bell sound.
there is already some sound on this channel then
routine does nothing. If there is no sound on this

channel then a ping sound will be started and the routine

will return. If another call to BEEP is made before
first ping has finished then it will hang wup until
first one finishes, and then start the second one
return. .cp 3

A ping can also be triggered by sending an ASCII
character to the sound driver. This will have just

same effect as if the video driver calls the routine BEEP.

¥

==y =

rm r

1

—

=1 D S |

™1

C

e
\

L3 32 J €3 3 £33 1 B4

C

(2 L1 L3 i1 wa

i1 3 3 a4

3
C

L.

[S0 |

24-2-84 THE DAVE CHIP PAGE 1

PROGR AMMING THE DAVE CHIP
RRRRRRRRARRR RN R R AR R AR R

The DPC Sound Chip performs the following functions:-

1. Multi-function '3 tones + noise' stereo sound generator.

2. Memory paging.

3. Address decoding for on-board ram, rom and cartridge.

4, Interrupt system including l1Hz and programmable frequency
timer interrupts and two external inputs.

5. Reset circuit compatible with Z80 and dynamic ram.

6. I/O strobe signals for use with external octal latches and
tri-state buffers.

7. 1MHz system clock.

8. 280 wait state generator.

DPC Sound chip has 22 internal registers,. 17 of which are write-
only. 16 of these registers -are associated with the sound
generation, four R/W registers are for memory management, and one
R/W register is used for interrupt control. The last write-only
register is used for setting the overall system configuration.
Internal decoding is provided for a further 3 I/0 registers, read
and write strobes being brought out for use with external latches
and tri-state buffers on the data bus. Reset clears all 22
internal registers.

The 3 tone generators produce square waves with frequency
programmable from 30Hz to 125KHz which can be modified in various
ways:-—

a. Distortion can be introduced by using the output frequency
to sample H.F. clocked polynomial counters., PN counters
which can be selected are 4,5 or 7 bit. The 7 bit PN can
also be exchanged for a variable length 17/15/11/9 bit PN
counter.

b. A simple high pass filter is provided on each channel,
clocked by the output of a different channel.

c. A ring modulator effect is provided on each channel, with
the output of a different channel for it's other input.

The noise channel is normally a 17 bit PN counter clocked from
31KHz,, generating a pseudo white noise. The input to this
counter can be changed to clock off any of the 3 tone channels,
and the PN counter can be reduced in length to 15, 1l or 9 bits.
This counter can also be exchanged for the 7 bit PN couanter. The
resulting noise 1is then passed through high pass and low pass
filters and a ring modulator, each controlled by the output of a
different tone channel.

ADQUIPMENT BV
INDUSTRIZVIEC 10-12
PCLTEUS 30
3440 Al \LTZINDEN

TEL Q3220 1074y
L A R §

= la L2

213

rAnYDR T (Y TaR4 Tntallinant SrFtware Ltd

24-2-84 THE DAVE CHIP PAGE 2

The 3 tone generator outputs and the noise generator output are
routed +to 2 amplitude control circuits (left and right). Each
amplitude control consists of four 6 bit write-only registers
(one for each sound) which are multiplexed onto an external 6 bit
D/A resistor network. In it's own time slot each channel outputs
the value in it's amplitude register if tone is high, else zero.

Either or both of the sound output channels may be turned into 6
bit D/A outputs, when they will constantly output the values in
tone channel 0 amplitude registers. This is controlled by 2 bits
in the write-only sound configuration register. Three further
bits may be used to synchronise the tone generators by holding
them at a preset count until sync bit goes low.

Memory management consits of 4 read/write registers which may be
output onto Al4-A2l pins by selecting the required register with
Al4', Al5'. This provides 256 * 16K pages. These outputs may be
tri-stated with BREQ.

Four latched interrupts are provided, a lHz interrupt for time
clock applications, an interrupt switchable between 50Hz, 1KHz,
or the outputs of tone generators 0 or 1, and two external neg-
ative edge triggered interrupts. Each interrupt latch has it's
own enable and reset controlled by a 8 bit write-only register.
An attempt to read this register will return the state of the
four interrupt latches and two interrupt input pins, and also two
flip -flops toggling off the timer interrupts. The setting of
any interrupt latch will bring IRQ low (open drain).
50Hz/1KHz/tone generator interrupt selection is made by 2 bits in
the sound configuration register.

Select signals are genérated for rom, cartridge, video ram and
video I/0. A 1MHz clock output is also provided.

A 280 reset 1is provided on RSTO, either on switch on by an
external RC network on CAP, or a low going signal on RSTI. The
latter generates a 1lmS reset pulse synchronised to the falling
edge of M1l to prevent loss of data stored in dynamic ram. The
RSTO output reqguires an external 74ALSO4 inverter to drive the
system reset line at the correct speed and inversion.

A write-only system configuration register is used to set the
system for 16/64K on board ram, 8/12MHz input clock, and wait
states. The wait state generator can be programmed to give no
wait states, waits on opcode fetch only, or waits on all memory
accesses. Note that no wait is ever generated for access to
video ram, as this would conflict with Z80 clock stretch.

Y Yy Yy oy

rM ey Yy ryoryriyory M

| g |

L3

L= €3 L2 L3

L1 3 &3 3 £33 B2 £33 K2 3 a3 oua

[S

il B3

1}

C

(

C

-

C

24-2-84

THE DAVE CHIP PAGE 3

REGISTER DESCR IPTIONS

RO W €£A0
b7-b0
R1 W €£Al
b3-b0
b5,b4
b6
b7
R2 W £A2
R3 W £A3
R4 W E£EA4
R5 W €£AS

-

m~ATUT TATTM

Low byte of number to be loaded into 12 bit down
counter to set period of tone channel 0.
High nybble of above, £ out = 125,000/(n+l) Hz.
00 = Pure tone
01 = Enable 4 bit polynomial caunter d;stortzon
10 = " 5 bit 2
11l = " 7 bit " " L
1 = Enable high pass filter using tone channel 1

as clock. ‘
1 = Enable ring modulator with tone channel 2
As RO but for tone channel 1.
As R1 but for tone channel 1 except:-
H.P.F. uses tone channel 2
R.M. uses noise channel
As RO but for tone channel 2.
As R1 but for tone channel 2 except:-
H.P.F., uses noise channel
R.M. uses tone channel 0

LIS

rAa Tnoa Treallimane S~ Frwars T.ta

24-2-84

R6 W E£A6

b3,

b2

b4

b5

b6

b4

06-Db5

b7

THE DAVE CHIP

Select noise clock frequency:-

00 = 31.25KHz

01 = tone channel 0
10 = * " 1
il ¥ ® 2

Select polynomial counter length:-

00 = 17 bit
01 = 15 bit
10 = 11 bit
11 = 9 bit

PAGE 4

1 = Swop 17 bit and 7 bit polynomial counters

1 = Enable low pass filter on noise using

tone channel 2 as clock.

1 = Enable high pass filter on noise
tone channel 0 as clock.

using

1 = Enable ring modulator with tone channel 1

Sync for tone channel 0.
(1 = hold at preset, 0 = run)

Sync for tone channel 1.
Sync for tone channel 2.

1 = Turn L.H. audio output into D/A,
value in RS8.

outputting

1 = Turn R.H. audio output into D/A, outputting

value in R12

Select interrupt rate:-

00 = 1KHz
01 = 50Hz
10 = Tone generator 0,
1l = Tone generator 1
Undefined

£=250,000/(n+1)

N

MY PTY Y PRy e

g U e O

=Y £ ey ey

rm

o L2 JF L4 L3 uwa

(

C

-

£33 €2 3 3 £33 L3 a2 €3 3

L3 L3 t3
C

il

24-2-84 THE DAVE CHIP PAGE 5
R8 W £A8
---q;;:;E- Tone channel 0 L.H. amélitude
Also value output to L.H. D/A if R7 b3 =1
b7,bé Unde fined.
R9 W £A9
—--_;;:;E- Tone channel 1 L.H. amplitude
b7,bé Unde fined.
R10 W £AA
--—_EEZEE_ Tone channel 2 L.H. amplitude .
b7,b6 Undefined. '
R11 W £AB
----;EZQE- Noise channel L.H. amplitude
b7,bé Unde fined.
R12 W £AC
----EE:EE- Tone channel 0 R.H. amplitude
Also value output to R.H. D/A if R7 b4 =1
b7,bé Unde fined.
R13 W E£AD
-__-EE:;E- Tone channel 1 R.H. amplitude
b7,b6 Unde fined.
R14 W £AE
----;3:;5- Tone channel 2 R.H. amplitude
b7,b6 Undefined.
R15 W £AF
-;;:;0 Noise channel R.H. amplitude
b7,bé Unde fined.
COPYR IGHT (C) 1984 Intelligent Software Ltd

24-2-84 THE DAVE CHIP PAGE 6

b7-b0 Page register output to A21-Al4 if Al5',Al4' = 00

b7-b0 Page register output to A21-Al4 if Al5',Al4' = 01

b7-b0 Page register output to A21-Al4 if Al5',Al4' = 10

b7-b0 Page register output to A21-al4 if Al5',Al4' = 1l

r

b0 1 = Enable 1KHz/50Hz/TG interrupt.

bl 1 = Reset 1KHz/50Hz/TG interrupt latch.

b2 1 = Enable 1lHz interrupt.

b3 1 = Reset 1lHz interrupt latch. ’
b4 1 = Enable INTI. 2

b5 1l = Reset INT1 latch.

b6 1l = Enable INT2.

b7 1 = Reset INT2 latch. f

b0 1 = 1KHz/50Hz/TG divider. (f int/2 square wave).
bl 1 = 1KHz/50HZ/TG latch set.

b2 1 Hz divider. (0.5 Hz square wave).

b3 1 = IHz latch set.

b4 INT1 input pin. _

b5 1 = INT1l latch set.

b6 INT2 input pin.

b7 1 = INT2 latch set.

P

r—

S

.M M M MYy Yy Y Y Mmoo

rm Y Y Oy M M

-

—< L

3 It
C

[G

£33 (.3

(

s
C

-

3 3 L3 €2 ka

3 (.3

L3 3 &2 3
C

24-2-84

R21 W £BS
T active low
R21 R £BS
T ‘Active low
R22 W £B6

Active low

Active low

Active low

Active low

b0 On board RAM,

THE DAVE CHIP

strobe

strobe

strobe

strobe

strobe

strobe

on

on

on

on

on

on

WRO.

RDO.

WR1.

RD1.

WR 2.

RD2.

0=64k,1=16k.

bl Input clock frequency, 0=8MHz, 1=12MHz.

b3,b2 00
0l
10
11

AOD VD ToAUm

Wwuwun

PAGE 7

Wait on all memory access except video ram.
Wait on Ml only, except video ram.
No waits.
No waits.

e

1aaa

Tratallimrant+

CAFrwara

T+d

172

24-2-84

THE DAVE CHIP

SELECT OUTPUTS

Low for—I1/0 access £80 to £8F. Gated with
IORQ,RD,WR in video chip.

Low for memory access on pages 0-3. (0-£FFFF)

Gated externally with RD.

Low for memory access on pages 4-7. (£10000-£1FFFF)

Gated externally with RD,WR

Low for any memory access on pages £FC-£FF.
(£3F0000-£3FFFFF) IF R31 b0 = 0

Low for any memory access other than rom or
cartridge, (£20000-£3FFFFF) IF R31 b0 = 1

Gated with MREQ,RD,WR in video chip.

END OF DOCUMENT

PAGE 8

~ v

9

M Yy Y rYy

v rry

r-

=

[|

